会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Non-contact method for determining the presence of a contaminant in a semiconductor device
    • 用于确定半导体器件中污染物的存在的非接触方法
    • US06255128B1
    • 2001-07-03
    • US09130240
    • 1998-08-06
    • Carlos M. ChaconPradip K. Roy
    • Carlos M. ChaconPradip K. Roy
    • B01R3126
    • G01N27/002H01L22/12
    • The present invention provides a non-contact method for determining whether a contaminant is present in a semiconductor wafer having a substrate/dielectric interface formed thereon. in one advantageous embodiment, the method comprises field inducing a junction in equilibrium inversion in the semiconductor wafer device. A conventional corona source may be used to induce the junction to equilibrium inversion. This particular embodiment further includes forming a contaminant junction near the substrate/dielectric interface when the contaminant is present in the semiconductor wafer by adding charge and pulsing the junction out of equilibrium. A surface voltage measurement, which may be taken with a Kelvin probe, is obtained by measuring a change in a surface voltage as a function of time. The method further includes determining whether the contaminant is present in the semiconductor wafer from the change in the surface voltage. When the contaminant is present in the device, the change in the surface voltage is negligible. This negligible change is in stark contrast to the change in surface voltage that occurs in a non-contaminated device. The data obtained from these surface voltages can be plotted with conventional devices to yield the change in surface voltage with respect to time.
    • 本发明提供了一种用于确定在其上形成有衬底/电介质界面的半导体晶片中是否存在污染物的非接触方法。 在一个有利的实施例中,该方法包括在半导体晶片装置中的场平衡反转中的场感应。 传统的电晕源可以用来诱导结到平衡反转。 该特定实施例还包括当通过添加电荷并将结合脉冲到平衡之外,当污染物存在于半导体晶片中时,在衬底/电介质界面附近形成污染物结。 通过测量作为时间的函数的表面电压的变化可获得可以用开尔文探针进行的表面电压测量。 该方法还包括根据表面电压的变化确定污染物是否存在于半导体晶片中。 当设备中存在污染物时,表面电压的变化可以忽略不计。 这个微不足道的变化与在非污染设备中发生的表面电压的变化形成鲜明的对比。 从这些表面电压获得的数据可以用常规装置绘制,以产生相对于时间的表面电压的变化。
    • 7. 发明授权
    • Non-contact method for determining quality of semiconductor dielectrics
    • 用于确定半导体电介质质量的非接触方法
    • US06664800B2
    • 2003-12-16
    • US09756965
    • 2001-01-08
    • Carlos M. ChaconSundar ChetlurPradip K. Roy
    • Carlos M. ChaconSundar ChetlurPradip K. Roy
    • G01R3100
    • G01R31/2648G01R31/129
    • A non-contact method for determining a quality of a semiconductor dielectric. The method includes depositing a charge on a dielectric to achieve a high voltage on the dielectric, measuring a voltage drop of the dielectric as a function of time, and determining a soft breakdown voltage of the dielectric from the voltage drop as a function of time. The amount of charge that is deposited may vary. For example, the charge may be deposited until a voltage that ranges from about 4 megavolts to about 16 megavolts is achieved on the dielectric. The amount of charge may also depend on the thickness of the dielectric. For example, applying a charge as a function of the thickness may include applying 4 megavolts when the thickness is about 1.2 nm or applying 16 megavolts when the thickness is about 5.0 nm.
    • 一种用于确定半导体电介质质量的非接触方法。 该方法包括在电介质上沉积电荷以在电介质上实现高电压,测量作为时间的函数的电介质的电压降,以及根据时间从电压降确定电介质的软击穿电压。 存放的电荷量可能会有所不同。 例如,可以在电介质上实现电荷,直到达到约4兆伏特至约16兆伏特的电压。 电荷量也可以取决于电介质的厚度。 例如,作为厚度的函数施加电荷可以包括当厚度为约1.2nm时应用4兆伏,或者当厚度为约5.0nm时施加16兆伏特。
    • 8. 发明授权
    • Method and structure for oxide/silicon nitride interface substructure improvements
    • 改善氧化物/氮化硅界面亚结构的方法和结构
    • US06548422B1
    • 2003-04-15
    • US09966779
    • 2001-09-27
    • Pradip K. RoyDavid C. BradyCarlos M. Chacon
    • Pradip K. RoyDavid C. BradyCarlos M. Chacon
    • H01L2348
    • H01L21/28185H01L21/02332H01L21/0234H01L21/28202H01L21/28211H01L29/513H01L29/518H01L2924/0002H01L2924/00
    • A transistor gate dielectric structure includes an oxide layer formed on a substrate, a superjacent nitride layer and a transition layer interposed therebetween. The presence of the transition layer alleviates stress between the nitride and oxide layers and minimizes any charge trapping sites between the nitride and oxide layers. The transition layer includes both nitrogen and oxygen as components. The method for forming the structure includes forming the transition layer using a remote nitridation reactor at a sufficiently low temperature such that virtually no nitrogen reaches the interface formed between the oxide layer and the substrate. The oxide layer/substrate interface is relatively pristine and defect-free. In an exemplary embodiment, the oxide layer may be a graded structure formed using two distinct processing operations, a first operation at a relatively low temperature and a final operation at a temperature above the viscoelastic temperature of the oxide film.
    • 晶体管栅极电介质结构包括形成在衬底上的氧化物层,超临界氮化物层和介于其间的过渡层。 过渡层的存在减轻氮化物和氧化物层之间的应力,并使氮化物和氧化物层之间的任何电荷俘获位置最小化。 过渡层包括氮和氧作为组分。 形成结构的方法包括在足够低的温度下使用远程氮化反应器形成过渡层,使得实际上没有氮到达氧化物层和衬底之间形成的界面。 氧化物层/衬底界面相对原始且无缺陷。 在示例性实施例中,氧化物层可以是使用两种不同的加工操作形成的渐变结构,在较低温度下的第一操作和在高于氧化膜的粘弹性温度的温度下的最终操作。