会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method of fabricating lateral nanopores, directed pore growth and pore interconnects and filter devices using the same
    • 制造侧向纳米孔的方法,定向孔生长和孔互连以及使用其的过滤装置
    • US06461528B1
    • 2002-10-08
    • US09699114
    • 2000-10-27
    • Axel SchererTheodore DollThomas Hoffman
    • Axel SchererTheodore DollThomas Hoffman
    • B31D300
    • B01L3/5082B01J2219/00317B01J2219/00783B01J2219/00844B01J2219/00907B01L2200/12B82Y15/00C40B60/14G01Q80/00
    • Lateral pores in a thin metal film as well as fabricating branching and expanding ore arrays can be fabricated by a method of growing long pores laterally underneath a ask by use of stress compliant masks or varying the anodization voltage. Applications range from use with scanning electron microscope (SEM-compatible single molecule probe stations), to nanowire fixtures and to the use with a “pixelating, nonscanning” near field optical microscope (NOM). Pores are defined by conventional anodization vertically into the underlying membrane of preporous material through any overlying masking layers. The general solution is to utilize mechanically stable masks that withstand the stress during anodization and counteract the pore formation stress to lead to good pore ordering and directed growth. Multilayer masks are well suited for this. With a composition of materials having different elastic properties, tensile stress can be matched to counteract compressive stress caused by porous material growth. The boundary stress problem between preporous and porous material is solved by using a planarizing mask material that provides locally increased masking layer thickness at the critical boundary between nonporous and porous material in the film.
    • 薄金属膜中的侧向孔以及制造分支和扩展的矿石阵列可以通过使用应力柔顺掩模或改变阳极氧化电压在问题下横向生长长孔的方法来制造。 应用范围从使用扫描电子显微镜(SEM兼容单分子探针站)到纳米线夹具以及使用“像素化,非选择”近场光学显微镜(NOM)。 通过常规的阳极氧化,通过任何叠加的掩蔽层将孔定义为预浸材料的下面的膜。 一般的解决方案是利用在阳极氧化过程中承受应力的机械稳定的掩模,并抵消孔隙形成应力以导致良好的孔排序和定向生长。 多层面罩非常适合这一点。 通过具有不同弹性特性的材料组成,拉伸应力可以匹配以抵消由多孔材料生长引起的压缩应力。 通过使用在膜中无孔和多孔材料的临界边界处提供局部增加的掩蔽层厚度的平面化掩模材料来解决预型和多孔材料之间的边界应力问题。
    • 4. 发明授权
    • Method of forming intermediate structures in porous substrates in which electrical and optical microdevices are fabricated and intermediate structures formed by the same
    • 在其中制造电和光学微器件的多孔基板中形成中间结构的方法和由其形成的中间结构
    • US06350623B1
    • 2002-02-26
    • US09699221
    • 2000-10-27
    • Axel SchererTheodore DollV. Fuenzalida
    • Axel SchererTheodore DollV. Fuenzalida
    • H01L2100
    • H01G9/055B82Y20/00G02B6/1225H01F41/043H01L21/0334H01L23/5223H01L23/5227H01L2924/0002Y10S438/96H01L2924/00
    • The invention is a method of fabricating electrically passive components or optical elements on top or underneath of an integrated circuit by using a porous substrate that is locally filled with electrically conducting, light emitting, insulating or optically diffracting materials. The invention is directed to a method of fabricating electrically passive components like inductors, capacitors, interconnects and resistors or optical elements like light emitters, waveguides, optical switches of filters on top or underneath of an integrated circuit by using porous material layer that is locally filled with electrically conducting, light emitting, insulating or optically diffracting materials. In the illustrated embodiment the fabrication of voluminous, solenoid-type inductive elements in a porous insulating material by standard back- and front-side-lithography and contacting these two layers by electroplating micro-vias through the pores is described. By using a very dense interconnect spacing, an inter-pore capacitor structure is obtained between the metalized pores and the pore walls utilized as insulators.
    • 本发明是通过使用局部填充有导电,发光,绝缘或光学衍射材料的多孔基底来在集成电路的顶部或底部制造无源部件或光学元件的方法。 本发明涉及一种通过使用局部填充的多孔材料层来制造诸如电感器,电容器,互连和电阻器的电学无源部件的方法,如光发射器,波导,集成电路的顶部或下方的滤波器的光学开关 具有导电,发光,绝缘或光学衍射材料。 在所示实施例中,描述了通过标准的背面和正面光刻在多孔绝缘材料中制造大量的螺线管型感应元件,并通过使微孔电穿孔而接触这两层。 通过使用非常密集的互连间距,在金属化孔和用作绝缘体的孔壁之间获得孔间电容器结构。