会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Dual prediction branch system having two step of branch recovery process
which activated only when mispredicted branch is the oldest instruction
in the out-of-order unit
    • 双预测分支系统具有分支恢复过程的两个步骤,仅在错误预测分支是无序单元中最旧的指令时激活
    • US5812839A
    • 1998-09-22
    • US851141
    • 1997-05-05
    • Bradley D. HoytGlenn J. HintonDavid B. PapworthAshwani Kumar GuptaMichael Alan FettermanSubramanian NatarajanSunil ShenoyReynold V. D'Sa
    • Bradley D. HoytGlenn J. HintonDavid B. PapworthAshwani Kumar GuptaMichael Alan FettermanSubramanian NatarajanSunil ShenoyReynold V. D'Sa
    • G06F9/38
    • G06F9/3806G06F9/322G06F9/3844G06F9/3863G06F9/3885
    • A four stage branch instruction resolution system for a pipelined processor is disclosed. A first stage of the branch instruction resolution system predicts the existence and outcome of branch instructions within an instruction stream such that an instruction fetch unit can continually fetch instructions. A second stage decodes all the instructions fetched. If the decode stage determines that a branch instruction predicted by the first stage is not a branch instruction, the decode stage flushes the pipeline and restarts the processor at a corrected address. The decode stage verifies all branch predictions made by the branch prediction stage. Finally, the decode stage makes branch predictions for branches not predicted by the branch prediction stage. A third stage executes all the branch instructions to determine a final branch outcome and a final branch target address. The branch execution stage compares the final branch outcome and final branch target address with the predicted branch outcome and predicted branch target address to determine if the processor must flush the front-end of the microprocessor pipeline and restart at a corrected address. A final branch resolution stage retires all branch instructions. The retirement stage ensures that any instructions fetched after a mispredicted branch are not committed into permanent state.
    • 公开了一种用于流水线处理器的四级分支指令解析系统。 分支指令解析系统的第一阶段预测指令流内分支指令的存在和结果,使得指令获取单元可以连续地获取指令。 第二阶段解码所有提取的指令。 如果解码级确定由第一级预测的分支指令不是分支指令,则解码级别刷新流水线并以校正的地址重新启动处理器。 解码阶段验证分支预测阶段所做的所有分支预测。 最后,解码阶段对分支预测阶段未预测的分支进行分支预测。 第三阶段执行所有分支指令以确定最终分支结果和最终分支目标地址。 分支执行阶段将最终分支结果和最终分支目标地址与预测的分支结果和预测分支目标地址进行比较,以确定处理器是否必须冲洗微处理器流水线的前端并以修正的地址重新启动。 最终的分支解决阶段退出所有分支指令。 退休阶段确保在错误预测的分支之后提取的任何指令不会被永久保留。
    • 4. 发明授权
    • Method and apparatus for predicting and handling resolving return from
subroutine instructions in a computer processor
    • 用于预测和处理计算机处理器中的子程序指令的解析返回的方法和装置
    • US5768576A
    • 1998-06-16
    • US739743
    • 1996-10-29
    • Bradley D. HoytGlenn J. HintonDavid B. PapworthAshwani Kumar GuptaMichael Alan FettermanSubramanian NatarajanSunil ShenoyReynold V. D'Sa
    • Bradley D. HoytGlenn J. HintonDavid B. PapworthAshwani Kumar GuptaMichael Alan FettermanSubramanian NatarajanSunil ShenoyReynold V. D'Sa
    • G06F9/38G06F9/42
    • G06F9/3806G06F9/30054G06F9/4426
    • A method and apparatus for resolving Return From Subroutine instructions in a computer processor are disclosed. The method and apparatus resolve Return From Subroutine instructions in four stages. A first stage predicts Call Subroutine instructions and Return From Subroutine instructions within the instruction stream. The first stage stores a return address in a return register when a Call Subroutine instruction is predicted. The first stage predicts a return to the return address in the return register when a Return From Subroutine instruction is predicted. A second stage decodes each Call Subroutine and Return From Subroutine instruction in order to maintain a Return Stack Buffer that stores a stack of return addresses. Each time the second stage decodes a Call Subroutine instruction, a return address is pushed onto the Return Stack Buffer. Correspondingly, each time the second stage decodes a Return From Subroutine instruction, a return address is popped off of the Return Stack Buffer. The second stage verifies predictions made by the first stage and predicts return addresses for Return From Subroutine instructions that were not predicted by the first stage. A third stage executes Return From Subroutine instructions such that the predictions are verified. Finally, a fourth stage retires Return From Subroutine instructions and ensures that no instructions fetch after a mispredicted return address are committed into permanent state.
    • 公开了一种用于解决计算机处理器中的子程序返回指令的方法和装置。 该方法和设备分四个阶段解析子程序指令。 第一阶段预测指令流中的调用子程序指令和子程序返回指令。 当预测一个调用子程序指令时,第一阶段将返回地址存储在一个返回寄存器中。 第一阶段预测当返回从子程序指令被预测时返回寄存器中的返回地址。 第二阶段解码每个调用子程序和从子程序返回指令,以便维护一个存储一堆返回地址的返回栈缓冲区。 每次第二阶段解码一个调用子程序指令时,一个返回地址被推到返回栈缓冲区上。 相应地,每次第二级解码从子程序返回指令时,返回地址从返回堆栈缓冲区中弹出。 第二阶段验证第一阶段做出的预测,并预测第一阶段未预测的返回从子程序指令的返回地址。 第三阶段执行从子程序返回指令,使得预测得到验证。 最后,第四阶段退出从子程序返回指令,并确保在错误预测的返回地址之后没有指令提取到永久状态。
    • 7. 发明授权
    • Trace based instruction caching
    • 基于跟踪的指令缓存
    • US06170038A
    • 2001-01-02
    • US09447078
    • 1999-11-22
    • Robert F. KrickGlenn J. HintonMichael D. UptonDavid J. SagerChan W. Lee
    • Robert F. KrickGlenn J. HintonMichael D. UptonDavid J. SagerChan W. Lee
    • G06F926
    • G06F12/0875
    • A cache memory is constituted with a data array and control logic. The data array includes a number of data lines, and the control logic operates to store a number of trace segments of instructions in the data lines, including trace segments that span multiple data lines. In one embodiment, each trace segment includes one or more trace segment members having one or more instructions, with each trace segment member occupying one data line, and the data lines of a multi-line trace segment being sequentially associated (logically). Retrieval of the trace segment members of a multi-line trace segment is accomplished by first locating the data line storing the first trace segment member of the trace segment, and then successively locating the remaining data lines storing the remaining trace segment members based on the data lines' logical sequential associations.
    • 高速缓冲存储器由数据阵列和控制逻辑构成。 数据阵列包括许多数据线,并且控制逻辑操作以在数据线中存储多条迹线段,包括跨越多个数据线的迹线段。 在一个实施例中,每个跟踪段包括具有一个或多个指令的一个或多个跟踪段成员,每个跟踪段成员占据一个数据线,并且多行跟踪段的数据线被顺序地相关联(逻辑地)。 通过首先定位存储跟踪段的第一跟踪段成员的数据线,然后基于数据连续定位存储剩余跟踪段成员的剩余数据线,来检索多行跟踪段的跟踪段成员 行的逻辑顺序关联。