会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Antifuse structure and process
    • 形成反熔丝的方法
    • US06344373B1
    • 2002-02-05
    • US09106980
    • 1998-06-29
    • Arup BhattacharyyaRobert M. GeffkenChung H. LamRobert K. Leidy
    • Arup BhattacharyyaRobert M. GeffkenChung H. LamRobert K. Leidy
    • H01L2182
    • H01L23/5252H01L2924/0002H01L2924/00
    • According to the preferred embodiment, an antifuse structure and method for personalizing a semiconductor device is provided that overcomes the limitations of the prior art. The preferred embodiment antifuse comprises a two layer transformable insulator core between two electrodes. The transformable core is normally non-conductive but can be transformed into a conductive material by supplying a sufficient voltage across the electrodes. The two layer core preferably comprises an injector layer and a dielectric layer. The injector layer preferably comprises a two phase material such as silicon rich nitride or silicon rich oxide. Initially, the injector layer and dielectric layer are non-conductive. When a sufficient voltage is applied the core fuses together and becomes conductive.
    • 根据优选实施例,提供了克服现有技术限制的用于个性化半导体器件的反熔丝结构和方法。 优选的实施例反熔丝包括在两个电极之间的两层可变形的绝缘体芯。 可变形的芯通常是非导电的,但是可以通过在电极之间提供足够的电压而将其转变成导电材料。 两层芯优选包括注入层和电介质层。 注射器层优选地包括两相材料,例如富氮的氮化物或富硅氧化物。 最初,喷射器层和电介质层是不导电的。 当施加足够的电压时,芯保持在一起并变得导电。
    • 2. 发明授权
    • Antifuse structure
    • 防腐结构
    • US5811870A
    • 1998-09-22
    • US850033
    • 1997-05-02
    • Arup BhattacharyyaRobert M. GeffkenChung H. LamRobert K. Leidy
    • Arup BhattacharyyaRobert M. GeffkenChung H. LamRobert K. Leidy
    • H01L21/82H01L23/525H01L29/04
    • H01L23/5252H01L2924/0002
    • According to the preferred embodiment, an antifuse structure and method for personalizing a semiconductor device is provided that overcomes the limitations of the prior art. The preferred embodiment antifuse comprises a two layer transformable insulator core between two electrodes. The transformable core is normally non-conductive but can be transformed into a conductive material by supplying a sufficient voltage across the electrodes. The two layer core preferably comprises an injector layer and a dielectric layer. The injector layer preferably comprises a two phase material such as silicon rich nitride or silicon rich oxide. Initially, the injector layer and dielectric layer are non-conductive. When a sufficient voltage is applied the core fuses together and becomes conductive.
    • 根据优选实施例,提供了克服现有技术限制的用于个性化半导体器件的反熔丝结构和方法。 优选的实施例反熔丝包括在两个电极之间的两层可变形的绝缘体芯。 可变形的芯通常是非导电的,但是可以通过在电极之间提供足够的电压而将其转变成导电材料。 两层芯优选包括注入层和电介质层。 注射器层优选地包括两相材料,例如富氮的氮化物或富硅氧化物。 最初,喷射器层和电介质层是不导电的。 当施加足够的电压时,芯保持在一起并变得导电。
    • 4. 发明授权
    • Methods of forming reverse mode non-volatile memory cell structures
    • 形成反向模式非易失性存储单元结构的方法
    • US08802526B2
    • 2014-08-12
    • US13409832
    • 2012-03-01
    • Arup Bhattacharyya
    • Arup Bhattacharyya
    • H01L21/336
    • H01L29/513B82Y10/00H01L29/42332H01L29/7881H01L29/792Y10S438/954
    • Methods of forming non-volatile memory cell structures are described that facilitate the use of band-gap engineered gate stacks with asymmetric tunnel barriers in reverse and normal mode floating node memory cells that allow for direct tunnel programming and erase, while maintaining high charge blocking barriers and deep carrier trapping sites for good charge retention. The low voltage direct tunneling program and erase capability reduces damage to the gate stack and the crystal lattice from high energy carriers, reducing write fatigue and enhancing device lifespan. The low voltage direct tunnel program and erase capability also enables size reduction through low voltage design and further device feature scaling. Such memory cells also allow multiple bit storage. These characteristics allow such memory cells to operate within the definition of a universal memory, capable of replacing both DRAM and ROM in a system.
    • 描述了形成非易失性存储单元结构的方法,其有助于在反向和正常模式浮动节点存储器单元中使用具有不对称隧道势垒的带隙工程化栅极堆叠,这允许直接隧道编程和擦除,同时保持高电荷阻挡屏障 和深载体捕获位点保持良好的电荷。 低电压直接隧道编程和擦除能力降低了高能量载流子对栅极堆叠和晶格的损害,减少了写入疲劳和增强了器件寿命。 低电压直接隧道编程和擦除功能还可以通过低电压设计和进一步的器件特性缩放来缩小尺寸。 这样的存储器单元还允许多个位存储。 这些特性允许这样的存储器单元在通用存储器的定义内操作,能够替换系统中的DRAM和ROM。
    • 6. 发明授权
    • Scalable multi-functional and multi-level nano-crystal non-volatile memory device
    • 可扩展的多功能和多级纳米晶体非易失性存储器件
    • US08530951B2
    • 2013-09-10
    • US13608483
    • 2012-09-10
    • Arup Bhattacharyya
    • Arup Bhattacharyya
    • H01L29/76G11C16/04
    • H01L29/792B82Y10/00G11C16/10H01L27/115H01L29/42332H01L29/513
    • A multi-functional and multi-level memory cell comprises a tunnel layer formed over a substrate. In one embodiment, the tunnel layer comprises two layers such as HfO2 and LaAlO3. A charge blocking layer is formed over the tunnel layer. In one embodiment, this layer is formed from HfSiON. A control gate is formed over the charge blocking layer. A discrete trapping layer is embedded in either the tunnel layer or the charge blocking layer, depending on the desired level of non-volatility. The closer the discrete trapping layer is formed to the substrate/insulator interface, the lower the non-volatility of the device. The discrete trapping layer is formed from nano-crystals having a uniform size and distribution.
    • 多功能和多层存储单元包括在衬底上形成的隧道层。 在一个实施例中,隧道层包括两层,例如HfO 2和LaAlO 3。 在隧道层上形成电荷阻挡层。 在一个实施方案中,该层由HfSiON形成。 控制栅极形成在电荷阻挡层上。 离散的捕获层嵌入在隧道层或电荷阻挡层中,这取决于期望的非挥发性水平。 离散捕获层越靠近衬底/绝缘体界面,器件的非易失性越低。 离散捕获层由具有均匀尺寸和分布的纳米晶体形成。