会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • ISOLATING DESIRED CONTENT, METADATA, OR BOTH FROM SOCIAL MEDIA
    • 分离所需的内容,元数据,或两个来自社会媒体
    • US20120221545A1
    • 2012-08-30
    • US13036776
    • 2011-02-28
    • Eric B. BellShawn J. BohnAndrew J. CowellMichelle L. GregoryEric J. MarshallDeborah A. Payne
    • Eric B. BellShawn J. BohnAndrew J. CowellMichelle L. GregoryEric J. MarshallDeborah A. Payne
    • G06F17/30
    • G06F17/30705G06F17/30864
    • Desired content, metadata, or both can be isolated from the full content of social media websites having content-rich pages. Achieving this can include obtaining from the content-rich pages a language-independent representation having a hierarchical structure of nodes and then generating a node representation for each node. Feature vectors for the nodes are generated and a label is assigned to each node representation according to a schema. Assignment can occur by executing a trained classification algorithm on the feature vectors. The schema has schema elements and each schema element corresponds to a label. For each schema element, all node representations having matching labels are gathered and then one node representation is elected from among those with matching labels to be assigned to a schema element field in a template. The template can be applied to extract desired content, metadata, or both according to the schema from all the content-rich pages.
    • 期望的内容,元数据或两者都可以从具有内容丰富的网页的社交媒体网站的完整内容中隔离开来。 实现这一点可以包括从内容丰富的页面获得具有节点的分层结构然后为每个节点生成节点表示的独立于语言的表示。 生成节点的特征向量,并根据模式将标签分配给每个节点表示。 可以通过对特征向量执行经过训练的分类算法来进行分配。 模式具有模式元素,每个模式元素对应于一个标签。 对于每个模式元素,收集具有匹配标签的所有节点表示,然后从具有匹配标签的那些中选择一个节点表示,以将其分配给模板中的模式元素字段。 该模板可以应用于根据所有富含内容的页面的模式提取所需内容,元数据或二者。
    • 5. 发明授权
    • Isolating desired content, metadata, or both from social media
    • 从社交媒体隔离所需的内容,元数据或两者
    • US08239425B1
    • 2012-08-07
    • US13036776
    • 2011-02-28
    • Eric B. BellShawn J. BohnAndrew J. CowellMichelle L. GregoryEric J. MarshallDeborah A. Payne
    • Eric B. BellShawn J. BohnAndrew J. CowellMichelle L. GregoryEric J. MarshallDeborah A. Payne
    • G06F7/00
    • G06F17/30705G06F17/30864
    • Desired content, metadata, or both can be isolated from the full content of social media websites having content-rich pages. Achieving this can include obtaining from the content-rich pages a language-independent representation having a hierarchical structure of nodes and then generating a node representation for each node. Feature vectors for the nodes are generated and a label is assigned to each node representation according to a schema. Assignment can occur by executing a trained classification algorithm on the feature vectors. The schema has schema elements and each schema element corresponds to a label. For each schema element, all node representations having matching labels are gathered and then one node representation is elected from among those with matching labels to be assigned to a schema element field in a template. The template can be applied to extract desired content, metadata, or both according to the schema from all the content-rich pages.
    • 期望的内容,元数据或两者都可以从具有内容丰富的网页的社交媒体网站的完整内容中隔离开来。 实现这一点可以包括从内容丰富的页面获得具有节点的分层结构然后为每个节点生成节点表示的独立于语言的表示。 生成节点的特征向量,并根据模式将标签分配给每个节点表示。 可以通过对特征向量执行经过训练的分类算法来进行分配。 模式具有模式元素,每个模式元素对应于一个标签。 对于每个模式元素,收集具有匹配标签的所有节点表示,然后从具有匹配标签的那些中选择一个节点表示,以将其分配给模板中的模式元素字段。 该模板可以应用于根据所有富含内容的页面的模式提取所需内容,元数据或二者。
    • 6. 发明授权
    • Automatic identification of abstract online groups
    • 自动识别抽象的在线组
    • US08700629B2
    • 2014-04-15
    • US13540759
    • 2012-07-03
    • David W. EngelMichelle L. GregoryEric B. BellAndrew J. CowellAndrew W. Piatt
    • David W. EngelMichelle L. GregoryEric B. BellAndrew J. CowellAndrew W. Piatt
    • G06F17/30
    • G06F17/30705G06Q10/10G06Q50/01
    • Online abstract groups, in which members aren't explicitly connected, can be automatically identified by computer-implemented methods. The methods involve harvesting records from social media and extracting content-based and structure-based features from each record. Each record includes a social-media posting and is associated with one or more entities. Each feature is stored on a data storage device and includes a computer-readable representation of an attribute of one or more records. The methods further involve grouping records into record groups according to the features of each record. Further still the methods involve calculating an n-dimensional surface representing each record group and defining an outlier as a record having feature-based distances measured from every n-dimensional surface that exceed a threshold value. Each of the n-dimensional surfaces is described by a footprint that characterizes the respective record group as an online abstract group.
    • 成员未明确连接的在线抽象组可以通过计算机实现的方法自动识别。 这些方法涉及从社交媒体中收集记录,并从每个记录中提取基于内容和基于结构的功能。 每个记录包括社交媒体发布,并与一个或多个实体相关联。 每个特征被存储在数据存储设备上,并且包括一个或多个记录的属性的计算机可读表示。 这些方法还包括根据每个记录的特征将记录分组到记录组中。 此外,所述方法还包括计算表示每个记录组的n维表面,并将异常值定义为具有从超过阈值的每个n维表面测量的基于特征的距离的记录。 n维表面中的每一个由描绘为相应记录组作为在线抽象组的印迹来描述。
    • 7. 发明申请
    • Automatic Identification of Abstract Online Groups
    • 抽象在线组的自动识别
    • US20130191390A1
    • 2013-07-25
    • US13540759
    • 2012-07-03
    • David W. EngelMichelle L. GregoryEric B. BellAndrew J. CowellAndrew W. Piatt
    • David W. EngelMichelle L. GregoryEric B. BellAndrew J. CowellAndrew W. Piatt
    • G06F17/30
    • G06F17/30705G06Q10/10G06Q50/01
    • Online abstract groups, in which members aren't explicitly connected, can be automatically identified by computer-implemented methods. The methods involve harvesting records from social media and extracting content-based and structure-based features from each record. Each record includes a social-media posting and is associated with one or more entities. Each feature is stored on a data storage device and includes a computer-readable representation of an attribute of one or more records. The methods further involve grouping records into record groups according to the features of each record. Further still the methods involve calculating an n-dimensional surface representing each record group and defining an outlier as a record having feature-based distances measured from every n-dimensional surface that exceed a threshold value. Each of the n-dimensional surfaces is described by a footprint that characterizes the respective record group as an online abstract group.
    • 成员未明确连接的在线抽象组可以通过计算机实现的方法自动识别。 这些方法涉及从社交媒体中收集记录,并从每个记录中提取基于内容和基于结构的功能。 每个记录包括社交媒体发布,并与一个或多个实体相关联。 每个特征被存储在数据存储设备上,并且包括一个或多个记录的属性的计算机可读表示。 这些方法还包括根据每个记录的特征将记录分组到记录组中。 此外,所述方法还包括计算表示每个记录组的n维表面,并将异常值定义为具有从超过阈值的每个n维表面测量的基于特征的距离的记录。 n维表面中的每一个由描绘为相应记录组作为在线抽象组的印迹来描述。