会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • VIDEO-BASED DETECTION OF MULTIPLE OBJECT TYPES UNDER VARYING POSES
    • 基于视频检测的多个对象类型在不同的位置
    • US20120263346A1
    • 2012-10-18
    • US13085547
    • 2011-04-13
    • Ankur DattaRogerio S. FerisSharathchandra U. PankantiBehjat SiddiquieYun Zhai
    • Ankur DattaRogerio S. FerisSharathchandra U. PankantiBehjat SiddiquieYun Zhai
    • G06K9/00
    • G06K9/4604G06K9/00751
    • Training data object images are clustered as a function of motion direction attributes and resized from respective original into same aspect ratios. Motionlet detectors are learned for each of the sets from features extracted from the resized object blobs. A deformable sliding window is applied to detect an object blob in input by varying window size, shape or aspect ratio to conform to a shape of the detected input video object blob. A motion direction of an underlying image patch of the detected input video object blob is extracted and motionlet detectors selected and applied that have similar motion directions. An object is thus detected within the detected blob and semantic attributes of an underlying image patch extracted if a motionlet detectors fires, the extracted semantic attributes available for use for searching for the detected object.
    • 训练数据对象图像作为运动方向属性的函数进行聚类,并从相应的原始尺寸变为相同的宽高比。 通过从调整大小的对象斑点中提取的特征,为每个集合学习运动检测器。 应用可变形滑动窗口通过改变窗口尺寸,形状或宽高比来检测输入中的对象斑点,以符合检测到的输入视频对象斑点的形状。 提取检测到的输入视频对象斑点的底层图像块的运动方向,并选择并应用具有相似运动方向的运动检测器。 因此,如果移动检测器触发,则所提取的底层图像块的检测到的blob和语义属性中的对象被检测到,所提取的语义属性可用于搜索检测到的对象。
    • 2. 发明授权
    • Video-based detection of multiple object types under varying poses
    • 在不同姿势下的多种对象类型的基于视频的检测
    • US08620026B2
    • 2013-12-31
    • US13085547
    • 2011-04-13
    • Ankur DattaRogerio S. FerisSharathchandra U. PankantiBehjat SiddiquieYun Zhai
    • Ankur DattaRogerio S. FerisSharathchandra U. PankantiBehjat SiddiquieYun Zhai
    • G06K9/00
    • G06K9/4604G06K9/00751
    • Training data object images are clustered as a function of motion direction attributes and resized from respective original into same aspect ratios. Motionlet detectors are learned for each of the sets from features extracted from the resized object blobs. A deformable sliding window is applied to detect an object blob in input by varying window size, shape or aspect ratio to conform to a shape of the detected input video object blob. A motion direction of an underlying image patch of the detected input video object blob is extracted and motionlet detectors selected and applied that have similar motion directions. An object is thus detected within the detected blob and semantic attributes of an underlying image patch extracted if a motionlet detectors fires, the extracted semantic attributes available for use for searching for the detected object.
    • 训练数据对象图像作为运动方向属性的函数进行聚类,并从相应的原始尺寸变为相同的宽高比。 通过从调整大小的对象斑点中提取的特征,为每个集合学习运动检测器。 应用可变形滑动窗口通过改变窗口尺寸,形状或宽高比来检测输入中的对象斑点,以符合检测到的输入视频对象斑点的形状。 提取检测到的输入视频对象斑点的底层图像块的运动方向,并选择并应用具有相似运动方向的运动检测器。 因此,如果移动检测器触发,则所提取的底层图像块的检测到的blob和语义属性中的对象被检测到,所提取的语义属性可用于搜索检测到的对象。
    • 3. 发明授权
    • Object retrieval in video data using complementary detectors
    • 使用互补检测器对视频数据进行对象检索
    • US09002060B2
    • 2015-04-07
    • US13535409
    • 2012-06-28
    • Ankur DattaRogerio S. FerisSharathchandra U. PankantiYun Zhai
    • Ankur DattaRogerio S. FerisSharathchandra U. PankantiYun Zhai
    • G06K9/00G06K9/62
    • G06K9/00771G06K9/00718G06K9/00758G06K9/6215G06K9/6218G06K9/6256G06K9/6262G06K2009/00738
    • Automatic object retrieval from input video is based on learned, complementary detectors created for each of a plurality of different motionlet clusters. The motionlet clusters are partitioned from a dataset of training vehicle images as a function of determining that vehicles within each of the scenes of the images in each cluster share similar two-dimensional motion direction attributes within their scenes. To train the complementary detectors, a first detector is trained on motion blobs of vehicle objects detected and collected within each of the training dataset vehicle images within the motionlet cluster via a background modeling process; a second detector is trained on each of the training dataset vehicle images within the motionlet cluster that have motion blobs of the vehicle objects but are misclassified by the first detector; and the training repeats until all of the training dataset vehicle images have been eliminated as false positives or correctly classified.
    • 从输入视频自动对象检索是基于为多个不同的运动集群中的每一个创建的学习的互补检测器。 作为确定每个群集中的图像的每个场景内的车辆在其场景内共享类似的二维运动方向属性的函数的函数,将运动群集从训练车辆图像的数据集分割。 训练互补检测器,对第一检测器进行训练,以通过背景建模过程在运动组内的每个训练数据集车辆图像内检测和收集的车辆物体的运动斑点进行训练; 对具有车辆对象的运动斑点但由第一检测器错误分类的运动集群内的训练数据集车辆图像上的每一个训练第二检测器; 并且训练重复,直到所有训练数据集车辆图像已被消除为假阳性或正确分类为止。
    • 4. 发明申请
    • OBJECT RETRIEVAL IN VIDEO DATA USING COMPLEMENTARY DETECTORS
    • 使用完全检测器的视频数据中的对象检索
    • US20140003708A1
    • 2014-01-02
    • US13535409
    • 2012-06-28
    • Ankur DattaRogerio S. FerisSharathchandra U. PankantiYun Zhai
    • Ankur DattaRogerio S. FerisSharathchandra U. PankantiYun Zhai
    • G06K9/62
    • G06K9/00771G06K9/00718G06K9/00758G06K9/6215G06K9/6218G06K9/6256G06K9/6262G06K2009/00738
    • Automatic object retrieval from input video is based on learned, complementary detectors created for each of a plurality of different motionlet clusters. The motionlet clusters are partitioned from a dataset of training vehicle images as a function of determining that vehicles within each of the scenes of the images in each cluster share similar two-dimensional motion direction attributes within their scenes. To train the complementary detectors, a first detector is trained on motion blobs of vehicle objects detected and collected within each of the training dataset vehicle images within the motionlet cluster via a background modeling process; a second detector is trained on each of the training dataset vehicle images within the motionlet cluster that have motion blobs of the vehicle objects but are misclassified by the first detector; and the training repeats until all of the training dataset vehicle images have been eliminated as false positives or correctly classified.
    • 从输入视频自动对象检索是基于为多个不同的运动集群中的每一个创建的学习的互补检测器。 作为确定每个群集中的图像的每个场景内的车辆在其场景内共享类似的二维运动方向属性的函数的函数,将运动群集从训练车辆图像的数据集分割。 训练互补检测器,对第一检测器进行训练,以通过背景建模过程在运动组内的每个训练数据集车辆图像内检测和收集的车辆物体的运动斑点进行训练; 对具有车辆对象的运动斑点但由第一检测器错误分类的运动集群内的训练数据集车辆图像上的每一个训练第二检测器; 并且训练重复,直到所有训练数据集车辆图像已被消除为假阳性或正确分类为止。
    • 5. 发明申请
    • MULTI-CUE OBJECT ASSOCIATION
    • 多目标对象协会
    • US20140098989A1
    • 2014-04-10
    • US13645831
    • 2012-10-05
    • Ankur DattaRogerio S. FerisSharathchandra U. PankantiYun Zhai
    • Ankur DattaRogerio S. FerisSharathchandra U. PankantiYun Zhai
    • G06K9/00
    • G06K9/00778G06K9/38G06K2209/23G06T7/248G06T2207/10016G06T2207/30236
    • Multiple discrete objects within a scene image captured by a single camera track are distinguished as un-labeled from a background model within a first frame of a video data input. Object position and object appearance and/or object size attributes are determined for each of the blobs, and costs determined to assign to existing blobs of existing object tracks as a function of the determined attributes and combined to generate respective combination costs. The un-labeled object blob that has a lowest combined cost of association with any of the existing object tracks is labeled with the label of that track having the lowest combined cost, said track is removed from consideration for labeling remaining un-labeled object blobs, and the process iteratively repeated until each of the track labels have been used to label one of the un-labeled blobs.
    • 由单个摄像机轨道拍摄的场景图像内的多个离散对象被区分为视频数据输入的第一帧内的背景模型的未标记。 确定每个斑点的对象位置和对象外观和/或对象大小属性,以及确定为根据所确定的属性分配给现有对象轨道的现有块的成本并组合以生成相应的组合成本。 与任何现有对象轨道具有最低组合成本的未标记对象斑点用具有最低组合成本的该轨道的标签进行标记,所述轨道被从考虑中去除以标记剩余的未标记对象斑点, 并且迭代地重复该过程,直到每个轨道标签已被用于标记未标记的一个斑点。
    • 10. 发明申请
    • INCORPORATING VIDEO META-DATA IN 3D MODELS
    • 在3D模型中加入视频元数据
    • US20120281873A1
    • 2012-11-08
    • US13101401
    • 2011-05-05
    • Lisa M. BrownAnkur DattaRogerio S. FerisSharathchandra U. Pankanti
    • Lisa M. BrownAnkur DattaRogerio S. FerisSharathchandra U. Pankanti
    • G06K9/00
    • G06T7/20G06K9/00208G06T7/251G06T13/20G06T17/00G06T19/006
    • A moving object detected and tracked within a field of view environment of a 2D data feed of a calibrated video camera is represented by a 3D model through localizing a centroid of the object and determining an intersection with a ground-plane within the field of view environment. An appropriate 3D mesh-based volumetric model for the object is initialized by using a back-projection of a corresponding 2D image as a function of the centroid and the determined ground-plane intersection. Nonlinear dynamics of a tracked motion path of the object are represented as a collection of different local linear models. A texture of the object is projected onto the 3D model, and 2D tracks of the object are upgraded to 3D motion to drive the 3D model by learning a weighted combination of the different local linear models that minimizes an image re-projection error of model movement.
    • 在校准摄像机的2D数据馈送的视野环境内检测和跟踪的移动物体由3D模型表示,其通过定位对象的质心并确定视场环境内的接地平面的交点 。 通过使用对应的2D图像的反投影作为质心和确定的地面交点的函数来初始化用于对象的适当的基于3D网格的体积模型。 对象的跟踪运动路径的非线性动力学被表示为不同局部线性模型的集合。 将对象的纹理投影到3D模型上,并且将对象的2D轨迹升级到3D运动,以通过学习不同局部线性模型的加权组合来驱动3D模型,从而最小化模型运动的图像重新投影误差 。