会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Laterally integrated MEMS sensor device with multi-stimulus sensing
    • 具有多重刺激感知功能的集成MEMS传感器装置
    • US08387464B2
    • 2013-03-05
    • US12627679
    • 2009-11-30
    • Andrew C. McNeilYizhen LinWoo Tae Park
    • Andrew C. McNeilYizhen LinWoo Tae Park
    • G01L9/12
    • G01L19/0092B81B7/02B81B2201/0235B81B2201/0264G01L9/0047G01L9/0073G01L19/0618G01P15/125G01P2015/0837G01P2015/088Y10T29/49002
    • A microelectromechanical systems (MEMS) sensor device (20) includes a substrate (22) having sensors (24, 26) disposed on the same side (28) of the substrate (22) and laterally spaced apart from one another. The sensor (26) includes a sense element (56), and the substrate (22) includes a cavity (58) extending through the substrate (22) from the backside (30) of the substrate (22) to expose the sense element (56) to an external environment (54). The sense element (56) is movable in response to a stimulus (52) from the environment (54) due to its exposure to the environment (54) via the cavity (58). Fabrication methodology (66) entails concurrently forming the sensors (24, 26) on substrate (22) by implementing MEMS process flow, followed by creating the cavity (58) through the substrate (22) to expose the sense element (56) to the environment (54).
    • 微机电系统(MEMS)传感器装置(20)包括具有设置在基板(22)的同一侧(28)上并且彼此横向间隔开的传感器(24,26)的基板(22)。 传感器(26)包括感测元件(56),并且衬底(22)包括从衬底(22)的背面(30)延伸穿过衬底(22)的空腔(58),以暴露感测元件 56)到外部环境(54)。 响应于来自环境(54)的刺激(52),感测元件(56)由于经由空腔(58)暴露于环境(54)而是可移动的。 制造方法(66)需要通过实施MEMS工艺流程同时在衬底(22)上形成传感器(24,26),随后通过衬底(22)产生空腔(58),以将感测元件(56)暴露于 环境(54)。
    • 3. 发明授权
    • MEMS sensor device with multi-stimulus sensing
    • 具有多刺激感知的MEMS传感器装置
    • US08487387B2
    • 2013-07-16
    • US13526279
    • 2012-06-18
    • Yizhen LinWoo Tae ParkMark E. SchlarmannHemant D. Desai
    • Yizhen LinWoo Tae ParkMark E. SchlarmannHemant D. Desai
    • H01L29/82
    • H01L28/60B81B7/02B81B2201/025B81B2201/0264G01L9/0073G01L19/0092G01P15/0802G01P15/125G01P2015/0814G01P2015/088H01G5/18
    • A device (20, 90) includes sensors (28, 30) that sense different physical stimuli. A pressure sensor (28) includes a reference element (44) and a sense element (52), and an inertial sensor (30) includes a movable element (54). Fabrication (110) entails forming (112) a first substrate structure (22, 92) having a cavity (36, 100), forming a second substrate structure (24) to include the sensors (28, 30), and coupling (128) the substrate structures so that the first sensor (28) is aligned with the cavity (36, 100) and the second sensor (30) is laterally spaced apart from the first sensor (28). Forming the second structure (24) includes forming (118) the sense element (52) from a material layer (124) of the second structure (24) and following coupling (128) of the substrate structures, concurrently forming (132) the reference element (44) and the movable element (54) in a wafer substrate (122) of the second structure (24).
    • 装置(20,90)包括感测不同物理刺激的传感器(28,30)。 压力传感器(28)包括参考元件(44)和感测元件(52),惯性传感器(30)包括可移动元件(54)。 制造(110)需要形成(112)具有空腔(36,100)的第一衬底结构(22,92),形成包括传感器(28,30)的第二衬底结构(24)和耦合(128) 所述基板结构使得所述第一传感器(28)与所述空腔(36,100)对准,并且所述第二传感器(30)与所述第一传感器(28)横向间隔开。 形成第二结构(24)包括从第二结构(24)的材料层(124)和衬底结构的耦合(128)形成(118)感测元件(52),同时形成(132)参考 元件(44)和第二结构(24)的晶片衬底(122)中的可移动元件(54)。
    • 5. 发明授权
    • Inertial sensor with off-axis spring system
    • 惯性传感器带离轴弹簧系统
    • US08739627B2
    • 2014-06-03
    • US13282192
    • 2011-10-26
    • Gary G. LiYizhen LinAndrew C. McNeilLisa Z. Zhang
    • Gary G. LiYizhen LinAndrew C. McNeilLisa Z. Zhang
    • G01C19/56
    • G01C19/5747G01C19/5762
    • An inertial sensor (20) includes a drive mass (30) configured to undergo oscillatory motion and a sense mass (32) linked to the drive mass (30). On-axis torsion springs (58) are coupled to the sense mass (32), the on-axis torsion springs (58) being co-located with an axis of rotation (22). The inertial sensor (20) further includes an off-axis spring system (60). The off-axis spring system (60) includes off-axis springs (68, 70, 72, 74), each having a connection interface (76) coupled to the sense mass (32) at a location on the sense mass (32) that is displaced away from the axis of rotation (22). Together, the on-axis torsion springs (58) and the off-axis spring system (60) enable the sense mass (32) to oscillate out of plane about the axis of rotation (22) at a sense frequency that substantially matches a drive frequency of the drive mass (30).
    • 惯性传感器(20)包括构造成经历振荡运动的驱动质量块(30)和与驱动质量块(30)连接的感测质量块(32)。 轴上扭转弹簧(58)联接到感测质量块(32),所述轴上扭转弹簧(58)与旋转轴线(22)共同定位。 惯性传感器(20)还包括离轴弹簧系统(60)。 离轴弹簧系统(60)包括离轴弹簧(68,70,72,74),每个离轴弹簧具有在感测质量块(32)上的位置处耦合到感测质量块(32)的连接界面(76) 其远离旋转轴线(22)移位。 一起,轴上扭转弹簧(58)和离轴弹簧系统(60)使得感测质量(32)能够以基本匹配驱动器的感测频率围绕旋转轴线(22)摆动离开平面 驱动质量(30)的频率。
    • 6. 发明申请
    • MEMS SENSOR WITH STRESS ISOLATION AND METHOD OF FABRICATION
    • 具有应力隔离的MEMS传感器和制造方法
    • US20130319117A1
    • 2013-12-05
    • US13482332
    • 2012-05-29
    • Andrew C. McNeilGary G. LiLisa Z. ZhangYizhen Lin
    • Andrew C. McNeilGary G. LiLisa Z. ZhangYizhen Lin
    • G01P15/125H01R43/00
    • G01P15/125G01P15/0802G01P15/18G01P2015/0831
    • A MEMS sensor (20, 86) includes a support structure (26) suspended above a surface (28) of a substrate (24) and connected to the substrate (24) via spring elements (30, 32, 34). A proof mass (36) is suspended above the substrate (24) and is connected to the support structure (26) via torsional elements (38). Electrodes (42, 44), spaced apart from the proof mass (36), are connected to the support structure (26) and are suspended above the substrate (24). Suspension of the electrodes (42, 44) and proof mass (36) above the surface (28) of the substrate (24) via the support structure (26) substantially physically isolates the elements from deformation of the underlying substrate (24). Additionally, connection via the spring elements (30, 32, 34) result in the MEMS sensor (22, 86) being less susceptible to movement of the support structure (26) due to this deformation.
    • MEMS传感器(20,86)包括悬挂在基板(24)的表面(28)上方并通过弹簧元件(30,32,34)连接到基板(24)的支撑结构(26)。 证明物质(36)悬挂在基底(24)上方,并通过扭转元件(38)连接到支撑结构(26)。 与证明物质(36)间隔开的电极(42,44)连接到支撑结构(26)并悬挂在基底(24)上方。 通过支撑结构(26)将基片(24)的表面(28)上方的电极(42,44)和检验质量块(36)悬挂在基本上物理上隔离下面的基底(24)的变形。 此外,通过弹簧元件(30,32,34)的连接导致MEMS传感器(22,86)由于这种变形而不易受支撑结构(26)的移动的影响。
    • 7. 发明授权
    • Differential capacitive sensor and method of making same
    • 差分电容式传感器及其制作方法
    • US07610809B2
    • 2009-11-03
    • US11655557
    • 2007-01-18
    • Andrew C. McNeilYizhen LinTodd F. Miller
    • Andrew C. McNeilYizhen LinTodd F. Miller
    • G01P15/125
    • G01P15/125G01P2015/0831
    • A differential capacitive sensor (50) includes a movable element (56) pivotable about a rotational axis (60). The movable element (56) includes first and second sections (94, 96). The first section (94) has an extended portion (98) distal from the rotational axis (60). A static layer (52) is spaced away from a first surface (104) of the moveable element (56), and includes a first actuation electrode (74), a first sensing electrode (64), and a third sensing electrode (66). A static layer (62) is spaced away from a second surface (106) of the moveable element (56) and includes a second actuation electrode (74), a second sensing electrode (70), and a fourth sensing electrode (72). The first and second electrodes (64, 70) oppose the first section (94), the third and fourth electrodes (66, 72) oppose the second section (96), and the first and second electrodes (68, 74) oppose the extended portion (98).
    • 差分电容传感器(50)包括可围绕旋转轴线(60)枢转的可移动元件(56)。 可移动元件(56)包括第一和第二部分(94,96)。 第一部分(94)具有远离旋转轴线(60)的延伸部分(98)。 静电层(52)与可移动元件(56)的第一表面(104)间隔开,并且包括第一致动电极(74),第一感测电极(64)和第三感测电极(66) 。 静电层(62)与可移动元件(56)的第二表面(106)间隔开并且包括第二致动电极(74),第二感测电极(70)和第四感测电极(72)。 第一和第二电极(64,70)与第一部分(94)相对,第三和第四电极(66,72)与第二部分(96)相对,并且第一和第二电极(68,74)与延伸的 部分(98)。
    • 8. 发明申请
    • MEMS SENSOR DEVICE WITH MULTI-STIMULUS SENSING
    • 具有多传感器的MEMS传感器器件
    • US20120256282A1
    • 2012-10-11
    • US13526279
    • 2012-06-18
    • Yizhen LinMark E. SchlarmannHemant D. DesaiWoo Tae Park
    • Yizhen LinMark E. SchlarmannHemant D. DesaiWoo Tae Park
    • H01L29/84
    • H01L28/60B81B7/02B81B2201/025B81B2201/0264G01L9/0073G01L19/0092G01P15/0802G01P15/125G01P2015/0814G01P2015/088H01G5/18
    • A device (20, 90) includes sensors (28, 30) that sense different physical stimuli. A pressure sensor (28) includes a reference element (44) and a sense element (52), and an inertial sensor (30) includes a movable element (54). Fabrication (110) entails forming (112) a first substrate structure (22, 92) having a cavity (36, 100), forming a second substrate structure (24) to include the sensors (28, 30), and coupling (128) the substrate structures so that the first sensor (28) is aligned with the cavity (36, 100) and the second sensor (30) is laterally spaced apart from the first sensor (28). Forming the second structure (24) includes forming (118) the sense element (52) from a material layer (124) of the second structure (24) and following coupling (128) of the substrate structures, concurrently forming (132) the reference element (44) and the movable element (54) in a wafer substrate (122) of the second structure (24).
    • 装置(20,90)包括感测不同物理刺激的传感器(28,30)。 压力传感器(28)包括参考元件(44)和感测元件(52),惯性传感器(30)包括可移动元件(54)。 制造(110)需要形成(112)具有空腔(36,100)的第一衬底结构(22,92),形成包括传感器(28,30)的第二衬底结构(24)和耦合(128) 所述基板结构使得所述第一传感器(28)与所述空腔(36,100)对准,并且所述第二传感器(30)与所述第一传感器(28)横向间隔开。 形成第二结构(24)包括从第二结构(24)的材料层(124)和衬底结构的耦合(128)形成(118)感测元件(52),同时形成(132)参考 元件(44)和第二结构(24)的晶片衬底(122)中的可移动元件(54)。
    • 9. 发明授权
    • Pressure sensor with differential capacitive output
    • 压差传感器具有差分电容输出
    • US09290067B2
    • 2016-03-22
    • US13598763
    • 2012-08-30
    • Andrew C. McNeilYizhen Lin
    • Andrew C. McNeilYizhen Lin
    • G01L9/12B60C23/04
    • G01L9/0072B60C23/0408G01L9/12
    • A MEMS pressure sensor device is provided that can provide both a linear output with regard to external pressure, and a differential capacitance output so as to improve the signal amplitude level. These benefits are provided through use of a rotating proof mass that generates capacitive output from electrodes configured at both ends of the rotating proof mass. Sensor output can then be generated using a difference between the capacitances generated from the ends of the rotating proof mass. An additional benefit of such a configuration is that the differential capacitance output changes in a more linear fashion with respect to external pressure changes than does a capacitive output from traditional MEMS pressure sensors.
    • 提供了可以提供关于外部压力的线性输出和差分电容输出以提高信号幅度电平的MEMS压力传感器装置。 这些优点通过使用旋转检测质量块来提供,该质量体在旋转检验质量体两端配置电极产生电容性输出。 然后可以使用从旋转检测质量块的端部产生的电容之间的差异来生成传感器输出。 这种配置的另外的好处是差分电容输出相对于来自传统MEMS压力传感器的电容输出相对于外部压力变化更线性地变化。
    • 10. 发明授权
    • MEMS device having variable gap width and method of manufacture
    • 具有可变间隙宽度的MEMS器件和制造方法
    • US08927311B2
    • 2015-01-06
    • US13028930
    • 2011-02-16
    • Andrew C. McNeilYizhen LinLisa Z. Zhang
    • Andrew C. McNeilYizhen LinLisa Z. Zhang
    • B81B3/00G01P15/08G01P15/125
    • B81B3/0056B81B7/02B81B2201/0235B81B2203/058B81B2203/06G01P15/0802G01P15/125G01P2015/0831H01L21/6835H01L22/34H01L2924/1461Y10T29/49156
    • A MEMS device (40) includes a base structure (42) and a microstructure (44) suspended above the structure (42). The base structure (42) includes an oxide layer (50) formed on a substrate (48), a structural layer (54) formed on the oxide layer (50), and an insulating layer (56) formed over the structural layer (54). A sacrificial layer (112) is formed overlying the base structure (42), and the microstructure (44) is formed in another structural layer (116) over the sacrificial layer (112). Methodology (90) entails removing the sacrificial layer (112) and a portion of the oxide layer (50) to release the microstructure (44) and to expose a top surface (52) of the substrate (48). Following removal, a width (86) of a gap (80) produced between the microstructure (44) and the top surface (52) is greater than a width (88) of a gap (84) produced between the microstructure (44) and the structural layer (54).
    • MEMS器件(40)包括基部结构(42)和悬挂在结构(42)上方的微结构(44)。 基底结构(42)包括形成在基底(48)上的氧化物层(50),形成在氧化物层(50)上的结构层(54)和形成在结构层(54)上的绝缘层 )。 牺牲层(112)形成在基部结构(42)上方,并且微结构(44)形成在牺牲层(112)上方的另一个结构层(116)中。 方法(90)需要去除牺牲层(112)和氧化物层(50)的一部分以释放微结构(44)并暴露衬底(48)的顶表面(52)。 在移除之后,在微结构(44)和顶表面(52)之间产生的间隙(80)的宽度(86)大于在微结构(44)和微结构(44)之间产生的间隙(84)的宽度(88) 结构层(54)。