会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Sensor with at least one micromechanical structure, and method for producing it
    • 具有至少一个微机械结构的传感器及其制造方法
    • US07273764B2
    • 2007-09-25
    • US11028370
    • 2005-01-03
    • Frank ReichenbachStefan PinterFrank HenningHans ArtmannHelmut BaumannFranz LaemerMichael OffenbergGeorg Bischopink
    • Frank ReichenbachStefan PinterFrank HenningHans ArtmannHelmut BaumannFranz LaemerMichael OffenbergGeorg Bischopink
    • H01L21/00
    • B81C1/00293B81B2201/0228B81B2207/095B81C2201/0115B81C2203/0136B81C2203/0145
    • The invention relates to a sensor with at least one silicon-based micromechanical structure, which is integrated with a sensor chamber of a foundation wafer, and with at least one covering that covers the foundation wafer in the region of the sensor chamber, and to a method for producing a sensor. It is provided that in the sensor of the invention, the covering (13) comprises a first layer (32) (deposition layer) that is permeable to an etching medium and the reaction products, and a hermetically sealing second layer (34) (sealing layer) located above it, and that in the method of the invention, at least the sensor chamber (28) present in the foundation wafer (11) after the establishment of the structure (26) is filled with an oxide (30), in particular CVD oxide or porous oxide; the sensor chamber (28) is covered by a first layer (32) (deposition layer), in particular of polysilicon, that is transparent to an etching medium and the reaction products or is retroactively made transparent; the oxide (30) in the sensor chamber (28) is removed through the deposition layer (32) with the etching medium; and next, a second layer (34) (sealing layer), in particular of metal or an insulator, is applied to the deposition layer (32) and hermetically seals off the sensor chamber (28).
    • 本发明涉及具有至少一个硅基微机械结构的传感器,其与基础晶片的传感器室结合,并且在传感器室的区域中具有覆盖基础晶片的至少一个覆盖物,以及至少一个 传感器的制造方法 设置在本发明的传感器中,覆盖物(13)包括可蚀刻介质和反应产物的第一层(沉积层)和密封的第二层(34)(密封 层),并且在本发明的方法中,在建立结构(26)之后,至少存在于基础晶片(11)中的传感器室(28)填充有氧化物(30),其中 特定的CVD氧化物或多孔氧化物; 传感器室(28)由对蚀刻介质和反应产物透明的或者具有回溯性的透明的第一层(32)(沉积层)(特别是多晶硅)覆盖; 传感器室(28)中的氧化物(30)通过蚀刻介质通过沉积层(32)去除; 接下来,将特别是金属或绝缘体的第二层(34)(密封层)施加到沉积层(32)并气密地密封传感器室(28)。
    • 4. 发明授权
    • Ultrasound-based measuring device and method
    • 超声波测量装置及方法
    • US09021882B2
    • 2015-05-05
    • US13329305
    • 2011-12-18
    • Frank SchatzJuergen GrafGottfried FlikGeorg BischopinkFabian Henrici
    • Frank SchatzJuergen GrafGottfried FlikGeorg BischopinkFabian Henrici
    • G01N29/00G01L11/06G01K11/22
    • G01L11/06G01K11/22
    • An ultrasound-based measuring device includes a measurement body, at least one ultrasonic transmitter for coupling ultrasonic measurement signals into the measurement body, and at least one ultrasonic receiver for detecting the ultrasonic measurement signals reflected at an end face of the measurement body. The at least one ultrasonic transmitter emits both a longitudinal and a transverse measurement signal. The influence of a physical disturbance variable on the measurement section traversed by the measurement signals during a determination of a measurement pressure prevailing at the end face and/or of a measurement temperature prevailing at the end face can be taken into account on the basis of the propagation times and a difference between the propagation times of the longitudinal and transverse measurement signals reflected at the end face.
    • 超声波测量装置包括测量体,用于将超声波测量信号耦合到测量体中的至少一个超声波发射器,以及用于检测在测量体的端面反射的超声波测量信号的至少一个超声波接收器。 所述至少一个超声波发射器发射纵向和横向测量信号。 在确定端面处的测量压力和/或端面处的测量温度的确定期间,物理干扰变量对测量部分的测量部分的影响可以基于 传播时间和在端面反射的纵向和横向测量信号的传播时间之间的差异。
    • 7. 发明申请
    • Sensor with at least one micromechanical structure, and method for producing it
    • 具有至少一个微机械结构的传感器及其制造方法
    • US20050230708A1
    • 2005-10-20
    • US11028370
    • 2005-01-03
    • Frank ReichenbachStefan PinterFrank HenningHans ArtmannHelmut BaumannFranz LaemerMichael OffenbergGeorg Bischopink
    • Frank ReichenbachStefan PinterFrank HenningHans ArtmannHelmut BaumannFranz LaemerMichael OffenbergGeorg Bischopink
    • B81B3/00B81B7/00B81C1/00C30B1/00
    • B81C1/00293B81B2201/0228B81B2207/095B81C2201/0115B81C2203/0136B81C2203/0145
    • The invention relates to a sensor with at least one silicon-based micromechanical structure, which is integrated with a sensor chamber of a foundation wafer, and with at least one covering that covers the foundation wafer in the region of the sensor chamber, and to a method for producing a sensor. It is provided that in the sensor of the invention, the covering (13) comprises a first layer (32) (deposition layer) that is permeable to an etching medium and the reaction products, and a hermetically sealing second layer (34) (sealing layer) located above it, and that in the method of the invention, at least the sensor chamber (28) present in the foundation wafer (11) after the establishment of the structure (26) is filled with an oxide (30), in particular CVD oxide or porous oxide; the sensor chamber (28) is covered by a first layer (32) (deposition layer), in particular of polysilicon, that is transparent to an etching medium and the reaction products or is retroactively made transparent; the oxide (30) in the sensor chamber (28) is removed through the deposition layer (32) with the etching medium; and next, a second layer (34) (sealing layer), in particular of metal or an insulator, is applied to the deposition layer (32) and hermetically seals off the sensor chamber (28).
    • 本发明涉及具有至少一个硅基微机械结构的传感器,其与基础晶片的传感器室结合,并且在传感器室的区域中具有覆盖基础晶片的至少一个覆盖物,以及至少一个 传感器的制造方法 设置在本发明的传感器中,覆盖物(13)包括可蚀刻介质和反应产物的第一层(沉积层)和密封的第二层(34)(密封 层),并且在本发明的方法中,在建立结构(26)之后,至少存在于基础晶片(11)中的传感器室(28)填充有氧化物(30),其中 特定的CVD氧化物或多孔氧化物; 传感器室(28)由对蚀刻介质和反应产物透明的或者具有回溯性的透明的第一层(32)(沉积层)(特别是多晶硅)覆盖; 传感器室(28)中的氧化物(30)通过蚀刻介质通过沉积层(32)去除; 接下来,将特别是金属或绝缘体的第二层(34)(密封层)施加到沉积层(32)并气密地密封传感器室(28)。
    • 9. 发明申请
    • Ultrasound-Based Measuring Device and Method
    • 超声波测量装置及方法
    • US20120152022A1
    • 2012-06-21
    • US13329305
    • 2011-12-18
    • Frank SchatzJuergen GrafGottfried FlikGeorg BischopinkFabian Henrici
    • Frank SchatzJuergen GrafGottfried FlikGeorg BischopinkFabian Henrici
    • G01N29/00
    • G01L11/06G01K11/22
    • An ultrasound-based measuring device includes a measurement body, at least one ultrasonic transmitter for coupling ultrasonic measurement signals into the measurement body, and at least one ultrasonic receiver for detecting the ultrasonic measurement signals reflected at an end face of the measurement body. The at least one ultrasonic transmitter emits both a longitudinal and a transverse measurement signal. The influence of a physical disturbance variable on the measurement section traversed by the measurement signals during a determination of a measurement pressure prevailing at the end face and/or of a measurement temperature prevailing at the end face can be taken into account on the basis of the propagation times and a difference between the propagation times of the longitudinal and transverse measurement signals reflected at the end face.
    • 超声波测量装置包括测量体,用于将超声波测量信号耦合到测量体中的至少一个超声波发射器,以及用于检测在测量体的端面反射的超声波测量信号的至少一个超声波接收器。 所述至少一个超声波发射器发射纵向和横向测量信号。 在确定端面处的测量压力和/或端面处的测量温度的确定期间,物理干扰变量对测量部分的测量部分的影响可以基于 传播时间和在端面反射的纵向和横向测量信号的传播时间之间的差异。