会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • Nanostructure, Photovoltaic Device, and Method of Fabrication Thereof
    • 纳米结构,光伏器件及其制造方法
    • US20120192934A1
    • 2012-08-02
    • US13379455
    • 2010-06-18
    • Zhiyong FanAli Javey
    • Zhiyong FanAli Javey
    • H01L31/0352H01L31/18H01L29/06
    • H01L31/035281H01L31/0296H01L31/035227H01L31/073H01L31/1836Y02E10/543
    • An embodiment of nanostructure includes a conductive substrate; an insulating layer on the conductive substrate, metal nanoparticles, and elongated single crystal nanostructures. The insulating layer includes an array of pore channels. The metal nanoparticles are located at bottoms of the pore channels. The elongated single crystal nanostructures contact the metal nanoparticles and extend out of the pore channels. An embodiment of a photovoltaic device includes the nanostructure and a photoabsorption layer. An embodiment of a method of fabricating a nanostructure includes forming an insulating layer on a conductive substrate. The insulating layer has pore channels arranged in an array. Metal nanoparticles are formed in the pore channels. The metal nanoparticles conductively couple to the conductive layer. Elongated single crystal nanostructures are formed in the pore channels. A portion of the insulating layer is etched away, which leaves the elongated single crystal nanostructures extending out of the insulating layer.
    • 纳米结构的一个实施例包括导电基底; 导电基板上的绝缘层,金属纳米颗粒和细长单晶纳米结构。 绝缘层包括孔通道阵列。 金属纳米粒子位于细孔通道的底部。 细长的单晶纳米结构与金属纳米粒子接触并延伸出孔隙通道。 光伏器件的一个实施例包括纳米结构和光吸收层。 纳米结构的制造方法的一个实施例包括在导电基底上形成绝缘层。 绝缘层具有排列成阵列的孔道。 在孔道中形成金属纳米颗粒。 金属纳米粒子导电地耦合到导电层。 在孔道中形成细长的单晶纳米结构。 绝缘层的一部分被蚀刻掉,其离开延伸出绝缘层的细长单晶纳米结构。
    • 4. 发明申请
    • THIN FILM VLS SEMICONDUCTOR GROWTH PROCESS
    • 薄膜半导体生长过程
    • US20140290737A1
    • 2014-10-02
    • US14243586
    • 2014-04-02
    • Ali JaveyZhibin YuRehan Kapadia
    • Ali JaveyZhibin YuRehan Kapadia
    • H01L31/0368H01L31/0304H01L31/18
    • H01L31/0368H01L31/0304H01L31/1852Y02E10/544Y02P70/521
    • A composition comprising a substrate, a polycrystalline III-V semiconductor layer, and an oxide layer disposed above the polycrystalline III-V semiconductor layer is described. A growth method that enables fabrication of continuous thin films of polycrystalline indium phosphide (InP) directly on metal foils is described. The method describes the deposition of an indium (In) thin film (up to 20 microns thick) directly on molybedenum (Mo) foil, followed by the deposition of a thin oxide capping layer (up to 1 micron thick). This capping layer prevents dewetting of the In from the substrate during subsequent high temperature processing steps. The Mo/In/Capping Layer stack is then heated in the presence of phosphorous precursors, causing supersaturation of the liquid indium with phosphorous, followed by precipitation of InP. These polycrystalline III-V films have grain sizes 100-200 microns, minority carrier lifetimes >2 ns and hall mobilities of 500 cm̂2/V-s.
    • 描述了包括基板,多晶III-V半导体层和设置在多晶III-V半导体层上方的氧化物层的组合物。 描述了能够直接在金属箔上制造多晶磷化铟(InP)的连续薄膜的生长方法。 该方法描述了直接在钼(Mo)箔上沉积铟(In)薄膜(直到20微米厚),然后沉积薄氧化物覆盖层(高达1微米厚)。 该封盖层防止在随后的高温处理步骤期间将In从衬底中去湿。 然后在磷前体的存在下加热Mo / In / Capping层堆叠,引起液体铟与磷过饱和,然后沉淀InP。 这些多晶III-V膜的晶粒尺寸为100-200微米,少数载流子寿命> 2ns,霍尔迁移率为500 cm2 / V-s。
    • 5. 发明授权
    • Semiconductor on insulator (XOI) for high performance field effect transistors
    • 绝缘体半导体(XOI)用于高性能场效应晶体管
    • US08525228B2
    • 2013-09-03
    • US13175281
    • 2011-07-01
    • Ali JaveyHyunhyub KoKuniharu Takei
    • Ali JaveyHyunhyub KoKuniharu Takei
    • H01L29/772H01L29/205H01L21/20
    • H01L29/78681H01L21/2007H01L21/8252H01L27/0605
    • Semiconductor-on-insulator (XOI) structures and methods of fabricating XOI structures are provided. Single-crystalline semiconductor is grown on a source substrate, patterned, and transferred onto a target substrate, such as a Si/SiO2 substrate, thereby assembling an XOI substrate. The transfer process can be conducted through a stamping method or a bonding method. Multiple transfers can be carried out to form heterogenous compound semiconductor devices. The single-crystalline semiconductor can be II-IV or III-V compound semiconductor, such as InAs. A thermal oxide layer can be grown on the patterned single crystalline semiconductor, providing improved electrical characteristics and interface properties. In addition, strain tuning is accomplished via a capping layer formed on the single-crystalline semiconductor before transferring the single-crystalline semiconductor to the target substrate.
    • 提供绝缘体上半导体(XOI)结构和制造XOI结构的方法。 单源半导体在源极衬底上生长,图案化并转移到诸如Si / SiO 2衬底的目标衬底上,从而组装XOI衬底。 转印过程可以通过冲压法或粘合法进行。 可以进行多次转移以形成异质化合物半导体器件。 单晶半导体可以是II-IV或III-V化合物半导体,例如InAs。 可以在图案化单晶半导体上生长热氧化物层,从而提供改善的电特性和界面性质。 此外,在将单晶半导体转移到目标衬底之前,通过在单晶半导体上形成的覆盖层来实现应变调谐。
    • 6. 发明授权
    • Surface and gas phase doping of III-V semiconductors
    • III-V半导体的表面和气相掺杂
    • US08697467B2
    • 2014-04-15
    • US12843271
    • 2010-07-26
    • Ali JaveyAlexandra C. FordJohnny C. Ho
    • Ali JaveyAlexandra C. FordJohnny C. Ho
    • H01L29/00
    • H01L21/2233H01L21/228H01L29/0673H01L29/068H01L29/207H01L29/78681
    • Compound semiconductor devices and methods of doping compound semiconductors are provided. Embodiments of the invention provide post-deposition (or post-growth) doping of compound semiconductors, enabling nanoscale compound semiconductor devices including diodes and transistors. In one method, a self-limiting monolayer technique with an annealing step is used to form shallow junctions. By forming a sulfur monolayer on a surface of an InAs substrate and performing a thermal annealing to drive the sulfur into the InAs substrate, n-type doping for InAs-based devices can be achieved. The monolayer can be formed by surface chemistry reactions or a gas phase deposition of the dopant. In another method, a gas-phase technique with surface diffusion is used to form doped regions. By performing gas-phase surface diffusion of Zn into InAs, p-type doping for InAs-based devices can be achieved. Both bulk and nanowire devices using compound semiconductors can be fabricated using these surface and gas-phase doping processes.
    • 提供了化合物半导体器件和掺杂化合物半导体的方法。 本发明的实施方案提供化合物半导体的后沉积(或后生长)掺杂,使纳米尺度的化合物半导体器件包括二极管和晶体管。 在一种方法中,使用具有退火步骤的自限制单层技术形成浅结。 通过在InAs衬底的表面上形成硫单层并执行热退火以将硫驱动到InAs衬底中,可以实现基于InAs的器件的n型掺杂。 单层可以通过表面化学反应或掺杂剂的气相沉积形成。 在另一种方法中,使用具有表面扩散的气相技术来形成掺杂区域。 通过使Zn进入InAs的气相表面扩散,可以实现基于InAs的器件的p型掺杂。 可以使用这些表面和气相掺杂工艺制造使用化合物半导体的体和纳米线器件。
    • 8. 发明授权
    • Nanoparticles with controlled growth
    • 具有受控生长的纳米颗粒
    • US07655272B1
    • 2010-02-02
    • US11437278
    • 2006-05-19
    • Ali JaveyHongjie Dai
    • Ali JaveyHongjie Dai
    • B05D1/32
    • C23C14/225B01J23/42B01J23/52B01J23/745B01J23/75B01J35/006B01J37/0238C23C14/042G03F7/40Y10S977/81
    • Nanostructures are implemented in a manner that facilitates controlled, nano-scale dimensional manufacture and implementation. According to an example embodiment of the present invention, a nanostructure is formed from a layer of deposited metallic material, sized using a mask and, in some applications, metal deposition angle. The deposited metallic material is heated to form a metallic nanocluster having a cross-section (e.g., diameter-type or width-type dimensional characteristics) that is less than a width of the layer of deposited metal material. In one application, the metallic material is deposited on a substrate and in wells defined by a mask formed on the substrate. The metallic material is annealed to form metallic nanoclusters having a diameter that is on an order of magnitude less than a width and/or diameter of the wells.
    • 纳米结构以促进受控的纳米级尺寸制造和实施的方式实现。 根据本发明的示例性实施例,纳米结构由沉积的金属材料层形成,其尺寸使用掩模,并且在一些应用中,金属沉积角度。 将沉积的金属材料加热以形成具有小于所沉积的金属材料层的宽度的横截面(例如,直径型或宽度尺寸特性)的金属纳米簇。 在一个应用中,金属材料沉积在基底上并在由形成在基底上的掩模限定的孔中。 将金属材料退火以形成直径小于孔的宽度和/或直径一个数量级的金属纳米团簇。