会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Method of forming complementary bipolar and MOS transistor having power
and logic structures on the same integrated circuit substrate
    • 在相同的集成电路基板上形成具有功率和逻辑结构的互补双极和MOS晶体管的方法
    • US5256582A
    • 1993-10-26
    • US800869
    • 1991-11-27
    • Dan M. MosherCornelia H. BlantonJoe R. TrogoloLarry LathamDavid R. CottonBob Todd
    • Dan M. MosherCornelia H. BlantonJoe R. TrogoloLarry LathamDavid R. CottonBob Todd
    • H01L27/06H01L21/00H01L21/02H01L21/22H01L21/26
    • H01L27/0623Y10S148/009
    • The present invention relates to a method of manufacturing a semiconductor integrated device and, more particularly, to a semiconductor integrated device having NPN and PNP power and logic devices combined with complementary MOS and DMOS devices. The present invention is a multipitaxial process for fabricating a high power/logic complementary bipolar/MOS/DMOS (CBiCMOS) integrated circuit. The process steps for fabricating the novel integrated circuit combines on the same substrate complementary high power, logic/analog bipolar transistors with complementary MOSGVm devices and DMOSFET devices. The present invention optimizes the characteristics of these different transistors in a single process flow. The present high power/logic CBiCMOS multiepitaxial process results in device structures having distinct technical advantages over prior art processes and structures heretofore known. For example, the present integrated circuit chip, uses bipolar power transistors instead of vertical DMOS power transistors for power applications. The bipolar power transistors are more rugged and have higher power handling capabilities than DMOS devices. Thus the bipolar transistors can be used for any out-stage configuration, including low side, high side, half bridge and full bridge output circuits. The versatility of the present process flow allows the fabrication of MOSFET, BiMOS, BiCMOS, and bipolar technology either discretely or with high power or low power NPN or PNP devices.
    • 本发明涉及一种制造半导体集成器件的方法,更具体地说,涉及一种具有NPN和PNP功率的半导体集成器件以及与互补MOS和DMOS器件相结合的逻辑器件。 本发明是用于制造高功率/逻辑互补双极/ MOS / DMOS(CBiCMOS)集成电路的多轴工艺。 用于制造新型集成电路的工艺步骤组合在具有互补MOSGVm器件和DMOSFET器件的相同衬底互补大功率逻辑/模拟双极晶体管上。 本发明在单个工艺流程中优化这些不同晶体管的特性。 目前的高功率/逻辑CBiCMOS多外延工艺导致了与先前已知的现有技术工艺和结构相比具有不同技术优点的器件结构。 例如,本集成电路芯片采用双极型功率晶体管代替用于功率应用的垂直DMOS功率晶体管。 双极功率晶体管比DMOS器件更加坚固耐用,具有更高的功率处理能力。 因此,双极晶体管可用于任何外置配置,包括低端,高端,半桥和全桥输出电路。 本工艺流程的多功能性允许离散地或与高功率或低功率NPN或PNP器件制造MOSFET,BiMOS,BiCMOS和双极技术。
    • 4. 发明授权
    • Drain-extended MOS ESD protection structure
    • 漏极扩展MOS静电保护结构
    • US06624487B1
    • 2003-09-23
    • US10163712
    • 2002-06-05
    • Keith E. KunzCharvaka DuvvuryDan M. Mosher
    • Keith E. KunzCharvaka DuvvuryDan M. Mosher
    • H01L2972
    • H01L27/0266
    • A protection structure (30; 30′; 30″) for safely conducting charge from electrostatic discharge (ESD) at a terminal (IN) is disclosed. The protection structure (30; 30′; 30″) includes a pair of drain-extended metal-oxide-semiconductor (MOS) transistors (32, 34). In a pump transistors (32), the gate electrode (45) overlaps a portion of a well (42) in which the drain (44) is disposed, to provide a significant gate-to-drain capacitance. The drains of the transistors (32, 34) are connected together and to the terminal (IN), while the gates of the transistors (32, 34) are connected together. The source of one transistor (32) is connected to a guard ring (50), of the same conductivity type as the substrate (40) within which the channel region of the other transistors (34) is disposed. An ESD event received at the terminal (IN) is thus coupled to the gate of the transistors (32, 34), causing conduction to the substrate (40) via the guard ring (50), and turning on a parasitic bipolar transistor at the other transistor (34), safely conducting the ESD current. One alternative structure (30′) includes a junction capacitor (65) coupled between the terminal (IN) and the gates of the transistors (32, 34) to improve the coupling. Another alternative structure (30″) includes a clamping diode (92) that also presents a parasitic bipolar transistor (95) enhancing the current conducted to the substrate (40).
    • 公开了一种用于在端子(IN)处安全地从静电放电(ESD)传导电荷的保护结构(30; 30'; 30“)。 保护结构(30; 30'; 30“)包括一对漏极延伸的金属氧化物半导体(MOS)晶体管(32,34)。 在泵浦晶体管(32)中,栅电极(45)与布置有漏极(44)的阱(42)的一部分重叠,以提供有效的栅 - 漏电容。 晶体管(32,34)的漏极连接在一起并连接到端子(IN),而晶体管(32,34)的栅极连接在一起。 一个晶体管(32)的源极连接到与其他晶体管(34)的沟道区域设置在其中的衬底(40)相同的导电类型的保护环(50)。 因此,在端子(IN)处接收到的ESD事件被耦合到晶体管(32,34)的栅极,从而经由保护环(50)导通到衬底(40),并且在第 其他晶体管(34),安全地传导ESD电流。 一个替代结构(30')包括耦合在端子(IN)和晶体管(32,34)的栅极之间的结电容器(65),以改善耦合。 另一替代结构(30“)包括钳位二极管(92),其还具有增强传导到衬底(40)的电流的寄生双极晶体管(95)。
    • 5. 发明授权
    • Electrostatic discharge resistant extended drain metal oxide semiconductor transistor
    • US06521946B2
    • 2003-02-18
    • US09998620
    • 2001-11-30
    • Dan M. Mosher
    • Dan M. Mosher
    • H01L2976
    • H01L29/0653H01L29/7834H01L29/7835
    • A semiconductor device comprising a first transistor (40) and a second transistor (100), both formed in a semiconductor substrate (50). The first transistor comprises a gate conductor (56) and a gate insulator (54) separating the gate conductor from a semiconductor material and defining a channel area (66) in the semiconductor material opposite from the gate conductor. The first transistor further comprises a source (S2) comprising a first doped region (581) of a first conductivity type and adjacent the channel area. Further, the first transistor comprises a drain (D2). The drain comprises a first well (641) adjacent the channel area and having a first concentration of the first conductivity type and a first doped region portion and a second doped portion (68). The first doped portion has a second concentration of the first conductivity type. The second concentration is greater than the first concentration and the first doped region portion has a common interface with the first well. The second doped region portion has the second concentration of the first conductivity type, wherein the second doped region portion has no common interface with the first well and is not adjacent the channel area. The second transistor (100) comprises a second well (642) formed using the same implant step as the first well and thereby having the first concentration of the first conductivity type. The second transistor further comprises a first source/drain (1101) and a second source/drain (1102), both comprising a second conductivity type complementary of the first conductivity type and formed within the second well.