会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Lateral double diffused metal oxide semiconductor device
    • US06441431B1
    • 2002-08-27
    • US09454934
    • 1999-12-03
    • Taylor EflandChin-Yu TsaiSameer Pendharkar
    • Taylor EflandChin-Yu TsaiSameer Pendharkar
    • H01L2976
    • H01L29/66537H01L29/086H01L29/0878H01L29/1045H01L29/1095H01L29/42368H01L29/517H01L29/518H01L29/7816H01L29/7833
    • An embodiment of the instant invention is a transistor formed on a semiconductor substrate of a first conductivity type and having an upper surface, the transistor comprising: a well region (well 204 of FIG. 1a) formed in the semiconductor substrate (layer 202 of FIG. 1a), the well region of a second conductivity type opposite that of the first conductivity type; a source region (source region 208 of FIG. 1a) formed in the well region in the semiconductor substrate, the source region of the second conductivity type; a drain region (drain 210 of FIG. 1a) formed in the semiconductor substrate and spaced away from the source region by a channel region (given by length L1+L2), the drain region of the second conductivity type; a conductive gate electrode (layer 218 of FIG. 1a) disposed over the semiconductor substrate and over the channel region; a gate insulating layer (layer 214 of FIG. 1a) disposed between the conductive gate electrode and the semiconductor substrate and having a length, the gate insulating layer comprising: a first portion of the gate insulating layer which has a first length (L1) and a first thickness; a second portion of the gate insulating layer which has a second length (L2) and a second thickness which is substantially thicker than the first thickness, the sum of the first length and the second length equalling the length of the gate insulating layer; and wherein the first portion of the gate insulating layer being situated proximate to the source region and spaced away from the drain region by the second portion of the gate insulating layer; and wherein the well region having a dopant concentration less than that of the source region and the drain region, the well region extends at least from source region towards the drain region so as to completely underlie the first portion of the gate insulating layer and to underlie at least the second portion of the gate insulating layer.
    • 6. 发明申请
    • Low cost fabrication method for high voltage, high drain current MOS transistor
    • 低成本高漏极电流MOS晶体管制造方法
    • US20050118753A1
    • 2005-06-02
    • US10725642
    • 2003-12-02
    • Taylor EflandJozef MitrosImran Khan
    • Taylor EflandJozef MitrosImran Khan
    • H01L21/336H01L21/8234H01L29/08H01L29/10H01L29/423H01L29/78
    • H01L29/0847H01L29/0878H01L29/1083H01L29/1087H01L29/42368H01L29/66659H01L29/7835
    • A method for reducing the drain resistance of a drain-extended MOS transistor in a semiconductor wafer, while maintaining a high transistor breakdown voltage. The method provides a first well (502) of a first conductivity type, operable as the extension of the transistor drain (501) of the first conductivity type; portions of the well are covered by a first insulator (503) having a first thickness. A second well (504) of the opposite conductivity type is intended to contain the transistor source (506) of the first conductivity type; portions of the second well are covered by a second insulator (507) thinner than the first insulator. The first and second wells form a junction (505) that terminates at the second insulator (530a, 530b). The method deposits a photoresist layer (510) over the wafer, which is patterned by opening a window (510a) that extends from the drain to the junction termination. Next, ions (540) of the first conductivity type are implanted through the window into the first well; these said ions have an energy to limit the penetration depth (541) to the first insulator thickness, and a dose to create a well region (560) of high doping concentration adjacent to the junction termination (530a).
    • 一种在保持高晶体管击穿电压的同时降低半导体晶片中的漏极扩展MOS晶体管的漏极电阻的方法。 该方法提供第一导电类型的第一阱(50​​2),其可操作为第一导电类型的晶体管漏极(501)的延伸; 阱的一部分被具有第一厚度的第一绝缘体(503)覆盖。 相反导电类型的第二阱(504)旨在包含第一导电类型的晶体管源(506); 第二阱的部分被比第一绝缘体薄的第二绝缘体(507)覆盖。 第一和第二阱形成终止于第二绝缘体(530a,530b)的结(505)。 该方法将光致抗蚀剂层(510)沉积在晶片之上,其通过打开从漏极延伸到结终端的窗口(510a)而被图案化。 接下来,通过窗口将第一导电类型的离子(540)注入到第一阱中; 这些所述离子具有将穿透深度(541)限制到第一绝缘体厚度的能量,以及用于产生邻近连接终端(530a)的高掺杂浓度的阱区(560)的剂量。