会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Functional device and method of manufacturing the same
    • 功能器件及其制造方法
    • US06953754B2
    • 2005-10-11
    • US10478888
    • 2002-06-04
    • Akio MachidaDharam Pal GosainSetsuo Usui
    • Akio MachidaDharam Pal GosainSetsuo Usui
    • B32B7/02H01L21/20H01L21/268H01L21/336H01L21/822H01L27/04H01L29/786H01L31/04H01L21/31
    • H01L21/02686H01L21/02532H01L21/2026H01L21/268H01L29/66757H01L29/66765H01L29/78603H01L29/78675H01L29/78678
    • The invention provides a functional device having no cracks and capable of delivering good functional characteristics and a method of manufacturing the same. A functional layer (14) is formed by crystallizing an amorphous silicon layer as a precursor layer by laser beam irradiation. A laser beam irradiation conducts heat up to a substrate (11) to cause it to try to expand; a stress to be produced by the difference in thermal expansion coefficient between the substrate (11) and the functional layer (14) is shut off by an organic polymer layer (12) lower in thermal expansion coefficient than the substrate (11), thereby causing no cracks nor separations in the functional layer (14). The organic polymer layer (12) is preferably made of an acrylic resin, an epoxy resin, or a polymer material containing these that is deformed by an optical or thermal process to undergo a three-dimensional condensation polymerization, for higher compactness and hardness. Inserting a metal layer and an inorganic heat resistant layer between the substrate (11) and the functional layer (14) will permit a more powerful laser irradiation.
    • 本发明提供了一种没有裂纹并且能够提供良好的功能特性的功能装置及其制造方法。 通过激光束照射使非晶硅层作为前体层结晶而形成功能层(14)。 激光束照射将热量传导到衬底(11)以使其试图膨胀; 由基板(11)和功能层(14)之间的热膨胀系数的差异产生的应力由热膨胀系数低于基板(11)的有机聚合物层(12)切断,从而导致 在功能层(14)中没有裂纹或分离。 有机聚合物层(12)优选由丙烯酸树脂,环氧树脂或包含它们的聚合物材料制成,这些材料通过光学或热过程变形以进行三维缩聚,以获得更高的紧凑性和硬度。 在基板(11)和功能层(14)之间插入金属层和无机耐热层将允许更强大的激光照射。
    • 3. 发明申请
    • Optical energy conversion apparatus
    • 光能转换装置
    • US20050092358A1
    • 2005-05-05
    • US10999049
    • 2004-11-29
    • Akio MachidaSetsuo UsuiKazumasa Nomoto
    • Akio MachidaSetsuo UsuiKazumasa Nomoto
    • H01L31/00H01L31/0368
    • H01L31/03682Y02E10/546
    • An optical energy conversion apparatus 10 includes a first impurity doped semiconductor layer 5, formed on a substrate, and which is of a semiconductor material admixed with a first impurity, an optically active layer 6, formed on the first impurity doped semiconductor layer 5, and which is of a hydrogen-containing amorphous semiconductor material, and a second impurity doped semiconductor layer 7, admixed with a second impurity and formed on the optically active semiconductor layer 6. The second impurity doped semiconductor layer is of a polycrystallized semiconductor material lower in hydrogen concentration than the material of the optically active semiconductor layer 6. The average crystal grain size in the depth-wise direction in an interfacing structure between the optically active semiconductor layer 6 and the second impurity doped semiconductor layer 7 is decreased stepwise in a direction proceeding from the surface of the second impurity doped semiconductor layer towards the substrate 1. By controlling the hydrogen concentration of the second impurity doped semiconductor layer 7, the number of dangling bonds in the second impurity doped semiconductor layer 7 is significantly decreased to exhibit superior crystallinity to improve the conversion efficiency of the apparatus 10.
    • 光能转换装置10包括形成在基板上的第一杂质掺杂半导体层5,其是与第一杂质混合的半导体材料,形成在第一杂质掺杂半导体层5上的光学活性层6,以及 其是含氢非晶半导体材料,和第二杂质掺杂半导体层7,与第二杂质混合并形成在光学活性半导体层6上。 第二杂质掺杂半导体层是多晶半导体材料,其氢浓度低于光学活性半导体层6的材料。 在光学活性半导体层6和第二杂质掺杂半导体层7之间的界面结构中的深度方向上的平均晶粒尺寸在从第二杂质掺杂半导体层的表面朝向衬底的方向上逐步降低 1。 通过控制第二杂质掺杂半导体层7的氢浓度,第二杂质掺杂半导体层7中的悬挂键数量显着降低,以显示出优异的结晶度,从而提高了装置10的转换效率。
    • 5. 发明授权
    • Functional device and method of manufacturing the same
    • 功能器件及其制造方法
    • US06716664B2
    • 2004-04-06
    • US10391811
    • 2003-03-20
    • Akio MachidaDharam Pal GosainSetsuo Usui
    • Akio MachidaDharam Pal GosainSetsuo Usui
    • H01L5140
    • H01L29/78603H01L21/02422H01L21/02532H01L21/02686H01L27/1281H01L29/66757H01L29/78606H01L29/78675
    • A functional device free from cracking and having excellent functional characteristics, and a method of manufacturing the same are disclosed. A low-temperature softening layer (12) and a heat-resistant layer (13) are formed in this order on a substrate (11) made of an organic material such as polyethylene terephthalate, and a functional layer (14) made of polysilicon is formed thereon. The functional layer (14) is formed by crystallizing an amorphous silicon layer, which is a precursor layer, with laser beam irradiation. When a laser beam is applied, heat is transmitted to the substrate (11) and the substrate (11) tends to expand. However, a stress caused by a difference in a thermal expansion coefficient between the substrate (11) and the functional layer (14) is absorbed by the low-temperature softening layer (12), so that no cracks and peeling occurs in the functional layer (14). The low-temperature softening layer (12) is preferably made of a polymeric material containing an acrylic resin. By properly interposing a metal layer and a heat-resistant layer between the substrate (11) and the functional layer (14), a laser beam of higher intensity can be irradiated.
    • 公开了一种没有破裂和功能特性优异的功能元件及其制造方法。 在由诸如聚对苯二甲酸乙二醇酯的有机材料制成的基板(11)上依次形成低温软化层(12)和耐热层(13),并且由多晶硅制成的功能层(14) 形成在其上。 通过用激光束照射使作为前体层的非晶硅层结晶来形成功能层(14)。 当施加激光束时,热量传递到基板(11),并且基板(11)趋于膨胀。 然而,由基板(11)和功能层(14)之间的热膨胀系数的差异引起的应力被低温软化层(12)吸收,从而在功能层中不会发生裂纹和剥离 (14)。 低温软化层(12)优选由含有丙烯酸树脂的聚合材料制成。 通过在基板(11)和功能层(14)之间适当地插入金属层和耐热层,可以照射更高强度的激光束。
    • 9. 发明授权
    • Optical energy conversion apparatus
    • 光能转换装置
    • US07199303B2
    • 2007-04-03
    • US10221719
    • 2001-03-13
    • Akio MachidaSetsuo UsuiKazumasa Nomoto
    • Akio MachidaSetsuo UsuiKazumasa Nomoto
    • H01N6/00
    • H01L31/03682Y02E10/546
    • An optical energy conversion apparatus 10 includes a first impurity doped semiconductor layer 5, formed on a substrate, and which is of a semiconductor material admixed with a first impurity, an optically active layer 6, formed on the first impurity doped semiconductor layer 5, and which is of a hydrogen-containing amorphous semiconductor material, and a second impurity doped semiconductor layer 7, admixed with a second impurity and formed on the optically active semiconductor layer 6. The second impurity doped semiconductor layer is of a polycrystallized semiconductor material lower in hydrogen concentration than the material of the optically active semiconductor layer 6. The average crystal grain size in the depth-wise direction in an interfacing structure between the optically active semiconductor layer 6 and the second impurity doped semiconductor layer 7 is decreased stepwise in a direction proceeding from the surface of the second impurity doped semiconductor layer towards the substrate 1. By controlling the hydrogen concentration of the second impurity doped semiconductor layer 7, the number of dangling bonds in the second impurity doped semiconductor layer 7 is significantly decreased to exhibit superior crystallinity to improve the conversion efficiency of the apparatus 10.
    • 光能转换装置10包括形成在基板上的第一杂质掺杂半导体层5,其是与第一杂质混合的半导体材料,形成在第一杂质掺杂半导体层5上的光学活性层6,以及 其是含氢非晶半导体材料,和第二杂质掺杂半导体层7,与第二杂质混合并形成在光学活性半导体层6上。 第二杂质掺杂半导体层是多晶半导体材料,其氢浓度低于光学活性半导体层6的材料。 在光学活性半导体层6和第二杂质掺杂半导体层7之间的界面结构中的深度方向上的平均晶粒尺寸在从第二杂质掺杂半导体层的表面朝向衬底的方向上逐步降低 1。 通过控制第二杂质掺杂半导体层7的氢浓度,第二杂质掺杂半导体层7中的悬挂键数量显着降低,以显示出优异的结晶度,从而提高了装置10的转换效率。