会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Sensor having free fall self-test capability and method therefor
    • 传感器具有自由落体自检能力及其方法
    • US07487661B2
    • 2009-02-10
    • US11580419
    • 2006-10-11
    • Akihiro UedaAndrew C. McNeil
    • Akihiro UedaAndrew C. McNeil
    • G01P15/125G01P21/00
    • G01P21/00G01P15/0891G01P15/125G01P15/18G01P2015/082G01P2015/0831G11B19/043
    • A transducer (20) includes a movable element (24), a self-test actuator (22), and a sensing element (56, 58). The sensing element (56, 58) detects movement of the movable element (24) from a first position (96) to a second position (102) along an axis perpendicular to a plane of the sensing element (56, 58). The second position (102) results in an output signal (82) that simulates a free fall condition. A method (92) for testing a protection feature of a device (70) having the transducer (20) entails moving the movable element (24) to the first position (102) to produce a negative gravitational force detectable at the sensing element (56, 68), applying a signal (88) to the actuator (22) to move the movable element (24) to the second position (102) by the electrostatic force (100) , and ascertaining an enablement of the protection feature in response to the simulated free fall.
    • 传感器(20)包括可移动元件(24),自检致动器(22)和感测元件(56,58)。 感测元件(56,58)沿着垂直于感测元件(56,58)的平面的轴线检测可动元件(24)从第一位置(96)到第二位置(102)的移动。 第二位置(102)产生模拟自由落体状态的输出信号(82)。 用于测试具有换能器(20)的装置(70)的保护特征的方法(92)需要将可移动元件(24)移动到第一位置(102)以产生在感测元件(56)处可检测到的负重力 ,68),通过静电力(100)将信号(88)施加到致动器(22)以将可移动元件(24)移动到第二位置(102),并且确定响应于 模拟自由落体。
    • 2. 发明申请
    • Sensor having free fall self-test capability and method therefor
    • 传感器具有自由落体自检能力及其方法
    • US20080087085A1
    • 2008-04-17
    • US11580419
    • 2006-10-11
    • Akihiro UedaAndrew C. McNeil
    • Akihiro UedaAndrew C. McNeil
    • G01P15/125
    • G01P21/00G01P15/0891G01P15/125G01P15/18G01P2015/082G01P2015/0831G11B19/043
    • A transducer (20) includes a movable element (24), a self-test actuator (22), and a sensing element (56, 58). The sensing element (56, 58) detects movement of the movable element (24) from a first position (96) to a second position (102) along an axis perpendicular to a plane of the sensing element (56, 58). The second position (102) results in an output signal (82) that simulates a free fall condition. A method (92) for testing a protection feature of a device (70) having the transducer (20) entails moving the movable element (24) to the first position (102) to produce a negative gravitational force detectable at the sensing element (56, 68), applying a signal (88) to the actuator (22) to move the movable element (24) to the second position (102) by the electrostatic force (100) , and ascertaining an enablement of the protection feature in response to the simulated free fall.
    • 传感器(20)包括可移动元件(24),自检致动器(22)和感测元件(56,58)。 感测元件(56,58)沿着垂直于感测元件(56,58)的平面的轴线检测可动元件(24)从第一位置(96)到第二位置(102)的移动。 第二位置(102)产生模拟自由落体状态的输出信号(82)。 用于测试具有换能器(20)的装置(70)的保护特征的方法(92)需要将可移动元件(24)移动到第一位置(102)以产生在感测元件(56)处可检测到的负重力 ,68),通过静电力(100)将信号(88)施加到致动器(22)以将可移动元件(24)移动到第二位置(102),并且确定响应于 模拟自由落体。
    • 3. 发明授权
    • MEMS sensor with stress isolation and method of fabrication
    • 具有应力隔离的MEMS传感器和制造方法
    • US08925384B2
    • 2015-01-06
    • US13482332
    • 2012-05-29
    • Andrew C. McNeilGary G. LiLisa Z. ZhangYizhen Lin
    • Andrew C. McNeilGary G. LiLisa Z. ZhangYizhen Lin
    • G01P15/125
    • G01P15/125G01P15/0802G01P15/18G01P2015/0831
    • A MEMS sensor (20, 86) includes a support structure (26) suspended above a surface (28) of a substrate (24) and connected to the substrate (24) via spring elements (30, 32, 34). A proof mass (36) is suspended above the substrate (24) and is connected to the support structure (26) via torsional elements (38). Electrodes (42, 44), spaced apart from the proof mass (36), are connected to the support structure (26) and are suspended above the substrate (24). Suspension of the electrodes (42, 44) and proof mass (36) above the surface (28) of the substrate (24) via the support structure (26) substantially physically isolates the elements from deformation of the underlying substrate (24). Additionally, connection via the spring elements (30, 32, 34) result in the MEMS sensor (22, 86) being less susceptible to movement of the support structure (26) due to this deformation.
    • MEMS传感器(20,86)包括悬挂在基板(24)的表面(28)上方并通过弹簧元件(30,32,34)连接到基板(24)的支撑结构(26)。 证明物质(36)悬挂在基底(24)上方,并通过扭转元件(38)连接到支撑结构(26)。 与证明物质(36)间隔开的电极(42,44)连接到支撑结构(26)并悬挂在基底(24)上方。 通过支撑结构(26)将基片(24)的表面(28)上方的电极(42,44)和检验质量块(36)悬挂在基本上物理上隔离下面的基底(24)的变形。 此外,通过弹簧元件(30,32,34)的连接导致MEMS传感器(22,86)由于这种变形而不易受支撑结构(26)的移动的影响。
    • 4. 发明授权
    • MEMS device with central anchor for stress isolation
    • 具有中心锚杆的MEMS器件用于应力隔离
    • US08610222B2
    • 2013-12-17
    • US13088579
    • 2011-04-18
    • Yizhen LinGary G. LiAndrew C. McNeilTodd F. MillerLisa Z. Zhang
    • Yizhen LinGary G. LiAndrew C. McNeilTodd F. MillerLisa Z. Zhang
    • H01L27/14
    • B81B3/0072B81B2203/0136B81B2203/0307
    • A MEMS device (20) includes a proof mass (32) coupled to and surrounding an immovable structure (30). The immovable structure (30) includes fixed fingers (36, 38) extending outwardly from a body (34) of the structure (30). The proof mass (32) includes movable fingers (60), each of which is disposed between a pair (62) of the fixed fingers (36, 38). A central area (42) of the body (34) is coupled to an underlying substrate (24), with the remainder of the immovable structure (30) and the proof mass (32) being suspended above the substrate (24) to largely isolate the MEMS device (20) from package stress, Additionally, the MEMS device (20) includes isolation trenches (80) and interconnects (46, 50, 64) so that the fixed fingers (36), the fixed fingers (38), and the movable fingers (60) are electrically isolated from one another to yield a differential device configuration.
    • MEMS装置(20)包括联接到并围绕不可移动结构(30)的检验质量块(32)。 不动结构(30)包括从结构(30)的主体(34)向外延伸的固定指状物(36,38)。 检测质量块(32)包括可动指状物(60),每个指状物设置在固定指状物(36,38)的一对(62)之间。 主体(34)的中心区域(42)联接到下面的基板(24),其中不可移动的结构(30)的其余部分和证明质量块(32)悬挂在基板(24)上方以大大隔离 另外,MEMS器件(20)包括隔离沟槽(80)和互连(46,50,64),使得固定指状物(36),固定指状物(38)和 可动指状物(60)彼此电隔离以产生差分装置构型。
    • 5. 发明申请
    • INERTIAL SENSOR WITH OFF-AXIS SPRING SYSTEM
    • 具有偏轴弹簧系统的惯性传感器
    • US20130104651A1
    • 2013-05-02
    • US13282192
    • 2011-10-26
    • Gary G. LiYizhen LinAndrew C. McNeilLisa Z. Zhang
    • Gary G. LiYizhen LinAndrew C. McNeilLisa Z. Zhang
    • G01C19/56
    • G01C19/5747G01C19/5762
    • An inertial sensor (20) includes a drive mass (30) configured to undergo oscillatory motion and a sense mass (32) linked to the drive mass (30). On-axis torsion springs (58) are coupled to the sense mass (32), the on-axis torsion springs (58) being co-located with an axis of rotation (22). The inertial sensor (20) further includes an off-axis spring system (60). The off-axis spring system (60) includes off-axis springs (68, 70, 72, 74), each having a connection interface (76) coupled to the sense mass (32) at a location on the sense mass (32) that is displaced away from the axis of rotation (22). Together, the on-axis torsion springs (58) and the off-axis spring system (60) enable the sense mass (32) to oscillate out of plane about the axis of rotation (22) at a sense frequency that substantially matches a drive frequency of the drive mass (30).
    • 惯性传感器(20)包括构造成经历振荡运动的驱动质量块(30)和与驱动质量块(30)连接的感测质量块(32)。 轴上扭转弹簧(58)联接到感测质量块(32),所述轴上扭转弹簧(58)与旋转轴线(22)共同定位。 惯性传感器(20)还包括离轴弹簧系统(60)。 离轴弹簧系统(60)包括离轴弹簧(68,70,72,74),每个离轴弹簧具有在感测质量块(32)上的位置处耦合到感测质量块(32)的连接界面(76) 其远离旋转轴线(22)移位。 一起,轴上扭转弹簧(58)和离轴弹簧系统(60)使得感测质量(32)能够以基本匹配驱动器的感测频率围绕旋转轴线(22)摆动离开平面 驱动质量(30)的频率。
    • 6. 发明申请
    • MEMS DEVICE ASSEMBLY AND METHOD OF PACKAGING SAME
    • MEMS器件组件及其封装方法
    • US20120175747A1
    • 2012-07-12
    • US13360920
    • 2012-01-30
    • Mark E. SchlarmannAndrew C. McNeilHemant D. Desai
    • Mark E. SchlarmannAndrew C. McNeilHemant D. Desai
    • H01L29/02H01L21/56
    • H04R31/00B81B7/0054B81B2201/0264B81C1/00309B81C2203/0154G01L9/0054G01L19/142G01L19/148H01L2224/48137H04R21/02H04R23/006H04R2201/003
    • An assembly (220) includes a MEMS die (222) and an integrated circuit (IC) die (224) attached to a substrate (226). The MEMS die (222) includes a MEMS device (237) formed on a substrate (242). A packaging process (264) entails forming the MEMS device (237) on the substrate (242) and removing a material portion of the substrate (237) surrounding the device (237) to form a cantilevered substrate platform (246) suspended above the substrate (226) at which the MEMS device (237) resides. The MEMS die (222) is electrically interconnected with the IC die (224). A plug element (314) can be positioned overlying the platform (246). Molding compound (32) is applied to encapsulate the die (222), the IC die (224), and substrate (226). Following encapsulation, the plug element (314) can be removed, and a cap (236) can be coupled to the substrate (242) overlying an active region (244) of the MEMS device (237).
    • 组件(220)包括附接到衬底(226)的MEMS管芯(222)和集成电路(IC)管芯(224)。 MEMS管芯(222)包括形成在衬底(242)上的MEMS器件(237)。 包装工艺(264)需要在衬底(242)上形成MEMS器件(237)并且去除围绕器件(237)的衬底(237)的材料部分,以形成悬浮在衬底上的悬臂衬底平台(246) (226),其中MEMS器件(237)所在的位置。 MEMS管芯(222)与IC管芯(224)电互连。 插头元件(314)可以被定位在平台(246)上方。 施加成型化合物(32)以封装模具(222),IC管芯(224)和基板(226)。 在封装之后,插塞元件(314)可以被去除,并且帽(236)可以耦合到覆盖在MEMS器件(237)的有源区域(244)上的衬底(242)。
    • 7. 发明申请
    • TRANSDUCER WITH DECOUPLED SENSING IN MUTUALLY ORTHOGONAL DIRECTIONS
    • 传感器在异常正交方向上具有解耦感测功能
    • US20100107763A1
    • 2010-05-06
    • US12262042
    • 2008-10-30
    • Yizhen LinAndrew C. McNeil
    • Yizhen LinAndrew C. McNeil
    • G01P15/18
    • G01P15/125G01P15/18G01P2015/0814G01P2015/082G01P2015/0831
    • A microelectromechanical systems (MEMS) transducer (90) is adapted to sense acceleration in mutually orthogonal directions (92, 94, 96). The MEMS transducer (90) includes a proof mass (100) suspended above a substrate (98) by an anchor system (116). The anchor system (116) pivotally couples the proof mass (100) to the substrate (98) at a rotational axis (132) to enable the proof mass (100) to rotate about the rotational axis (132) in response to acceleration in a direction (96). The proof mass (100) has an opening (112) extending through it. Another proof mass (148) resides in the opening (112), and another anchor system (152) suspends the proof mass (148) above the surface (104) of the substrate (98). The anchor system (152) enables the proof mass (148) to move substantially parallel to the surface (104) of the substrate (98) in response to acceleration in at least another direction (92, 94).
    • 微机电系统(MEMS)传感器(90)适于感测相互正交的方向上的加速度(92,94,96)。 MEMS换能器(90)包括通过锚系统(116)悬挂在基板(98)上方的检验质量块(100)。 锚定系统(116)在旋转轴线(132)处将证明物质(100)枢转地联接到基底(98),以使得证明物质(100)能够响应于旋转轴线(132)中的加速而围绕旋转轴线(132)旋转 方向(96)。 证明物质(100)具有延伸通过其的开口(112)。 另一个检验质量块(148)位于开口(112)中,另一个锚定系统(152)将校准物质(148)悬挂在衬底(98)的表面(104)上方。 锚系统(152)使得证明物质(148)响应于至少另一方向(92,94)上的加速,基本上平行于衬底(98)的表面(104)移动。
    • 9. 发明申请
    • CAPACITIVE SENSOR WITH STRESS RELIEF THAT COMPENSATES FOR PACKAGE STRESS
    • 具有应力消耗的电容传感器,用于包装应力补偿
    • US20090293616A1
    • 2009-12-03
    • US12129548
    • 2008-05-29
    • Yizhen LinAndrew C. McNeil
    • Yizhen LinAndrew C. McNeil
    • G01P15/125
    • H01L27/1203G01P15/125G01P21/00G01P2015/0831H01L28/40H01L28/60Y10T29/49002
    • A microelectromechanical systems (MEMS) capacitive sensor (52) includes a movable element (56) pivotable about a rotational axis (68) offset between ends (80, 84) thereof. A static conductive layer (58) is spaced away from the movable element (56) and includes electrode elements (62, 64). The movable element (56) includes a section (74) between the rotational axis (68) and one end (80) that exhibits a length (78). The movable element (56) further includes a section (76) between the rotational axis (68) and the other end (84) that exhibits a length (82) that is less than the length (78) of the section (74). The section (74) includes slots (88) extending through movable element (56) from the end (80) toward the rotational axis (68). The slots (88) provide stress relief in section (74) that compensates for package stress to improve sensor performance.
    • 微电子机械系统(MEMS)电容传感器(52)包括可围绕其端部(80,84)之间偏移的旋转轴线(68)枢转的可移动元件(56)。 静电导电层(58)与可动元件(56)间隔开并且包括电极元件(62,64)。 可移动元件(56)包括在旋转轴线(68)和呈现长度(78)的一端(80)之间的部分(74)。 可移动元件(56)还包括在旋转轴线(68)和另一端(84)之间的部分(76),该部分具有小于部分(74)的长度(78)的长度(82)。 部分(74)包括从端部(80)朝向旋转轴线(68)延伸穿过可移动元件(56)的槽(88)。 槽(88)在部分(74)中提供应力释放,其补偿包装应力以改善传感器性能。
    • 10. 发明授权
    • Circuit and method of compensating for membrane stress in a sensor
    • 补偿传感器膜应力的电路和方法
    • US06308577B1
    • 2001-10-30
    • US08722384
    • 1996-09-30
    • Ira E. BaskettAndrew C. McNeil
    • Ira E. BaskettAndrew C. McNeil
    • G01B716
    • G01L1/2275G01L9/0055G01L9/06
    • A circuit and method for correcting a sense signal of a sensor (100) where the sense signal is reduced by a negative nonlinear error component introduced by membrane stress in a sensor structure (101). A first transducer (103) is disposed at a location (203) having substantial bending stress to produce a sense signal having a linear component and the nonlinear error component. A second transducer (102) is disposed at a location (202) with substantially zero bending stress to produce a sense signal having the nonlinear error component but a substantially zero linear component. The sense signal from the second transducer (102) is added to the sense signal from the first transducer (103) to correct the nonlinear error for producing a linear output sense signal (VOUT) of the sensor (100) which is representative of the physical condition.
    • 一种用于校正传感器(100)的感测信号的电路和方法,其中感测信号由传感器结构(101)中的膜应力引入的负非线性误差分量减小。 第一传感器(103)设置在具有大的弯曲应力的位置(203),以产生具有线性分量和非线性误差分量的感测信号。 第二传感器(102)设置在基本上零弯曲应力的位置(202)处,以产生具有非线性误差分量但基本为零线性分量的感测信号。 来自第二换能器(102)的感测信号被添加到来自第一换能器(103)的感测信号,以校正非线性误差,以产生代表物理的传感器(100)的线性输出感测信号(VOUT) 条件。