会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Blanket N-LDD implantation for sub-micron MOS device manufacturing
    • 用于亚微米MOS器件制造的毯式N-LDD注入
    • US5413945A
    • 1995-05-09
    • US289671
    • 1994-08-12
    • Sun-Chieh ChienTzong-Shien Wu
    • Sun-Chieh ChienTzong-Shien Wu
    • H01L21/8238H01L27/092H01L21/336
    • H01L27/0928H01L21/823807
    • A method for making sub-micron MOS (Metal Oxide Semiconductor) devices, which do not suffer from hot carrier effect, and having improved short-channel effect and improved performance, is described. A silicon substrate with field isolation regions, P-well and N-well regions, and an oxide layer over the P-well and N-well regions is provided. The P-well region is implanted, in a substantially vertical direction, with a first conductivity-imparting dopant. Gate structures are formed over the P-well and N-well regions. A second conductivity-imparting dopant is implanted, at a large angle to the plane of the silicon substrate, that is of opposite conductivity to the first conductivity-imparting dopant, into the P-well and N-well regions, masked by the gate structures. The N-well region is implanted, in a substantially vertical direction, with a third conductivity-imparting dopant, of the same conductivity as the first conductivity-imparting dopant. Sidewall spacers are formed on the gate structures. The P-well region is implanted, in a substantially vertical direction, with a fourth conductivity-imparting dopant, of the same conductivity as the second conductivity-imparting dopant. The N-well region is implanted, in a substantially vertical direction, with a fifth conductivity-imparting dopant, of the same conductivity as the first conductivity-imparting dopant. The silicon substrate is heated to drive in the dopants.
    • 描述了一种制造不受热载流子效应的亚微米MOS(金属氧化物半导体)器件的方法,并且具有改善的短沟道效应和改进的性能。 提供了具有场隔离区域的硅衬底,P阱和N阱区域以及P阱和N阱区域上的氧化物层。 P阱区域在基本上垂直的方向上用第一导电性掺杂剂注入。 栅极结构形成在P阱和N阱区上。 第二导电性赋予掺杂剂以与第一导电性赋予掺杂剂相反的导电性的方式与硅衬底的平面成大角度地注入由P阱和N阱区域掩蔽的栅极结构 。 N阱区域在基本上垂直的方向上与具有与第一导电性赋予掺杂剂相同的导电性的第三导电性赋予掺杂剂注入。 侧壁间隔件形成在栅极结构上。 P阱区域在基本上垂直的方向上与第四导电性赋予掺杂剂一样,与第二导电性赋予掺杂剂相同。 在基本上垂直的方向上,用具有与赋予第一导电性的掺杂剂相同的导电性的第五导电性掺杂剂将N阱区域注入。 硅衬底被加热以在掺杂剂中驱动。