会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Magnetoresistive medium including a vicinally treated substrate
    • 包括连续处理的基底的磁阻介质
    • US20060202292A1
    • 2006-09-14
    • US11078416
    • 2005-03-14
    • Igor ShvetsSunil AroraSumesh Sofin Ramakrishna Pillai
    • Igor ShvetsSunil AroraSumesh Sofin Ramakrishna Pillai
    • H01L21/00
    • H01F41/30B82Y25/00B82Y40/00H01F1/0072H01F10/007H01F10/32Y10T428/1234Y10T428/31
    • A magnetoresistive medium (1) comprises a substrate (2) which has been treated to provide a miscut vicinal surface (3) in the form of terraces (4(a), 4(b)) and steps (5) of atomic and nanometer scale. A further upper film (11) provides upper nanowires (10(a), 10(b)). A thin protective layer (15) covers the upper nanowires (10(a), 10(b)) which form two separate subsets of upper nanowires with different exchange interaction with the substrate and thus a different response to an external magnetic field. The substrate (2) is so chosen that the width of the terraces 4(a) and 4(b) are significantly non-uniform. This leads to a different response depending on which terrace (4(a) or 4(b)) the upper film 11 overlies. It can utilise, for example, step-induced magnetic anisotropy between the upper nanowires (10(a), 10(b)) and the substrate (2). In use, when an external magnetic field (H) is applied the response of the main nanowires (10(a), 10(b)) changes as the exchange coupling with the substrate (2) varies and the magnetisation on the main nanowires (10(a), 10(b)) change. This is shown by the arrows while prior to the application of the external magnetic field, they might, for example, be aligned. Many different constructions of magnetoresistive media are described.
    • 磁阻介质(1)包括已经被处理以提供梯形(4(a),4(b))形式的捣实邻位表面(3)和原子和纳米级的步骤(5)的基底(2) 规模。 另一上层膜(11)提供上层纳米线(10(a),10(b))。 薄的保护层(15)覆盖上部纳米线(10(a),10(b)),其形成具有与衬底的不同交换相互作用的上部纳米线的两个分离的子集,因此对外部磁场具有不同的响应。 衬底(2)被选择为使得梯田4(a)和4(b)的宽度显着不均匀。 这导致不同的响应取决于上部膜11覆盖在哪个平台(4(a)或4(b))上。 它可以利用例如上部纳米线(10(a),10(b))和基板(2)之间的阶跃感应磁各向异性。 在使用中,当施加外部磁场(H)时,主纳米线(10(a),10(b))的响应随着与衬底(2)的交换耦合而变化并且主纳米线上的磁化( 10(a),10(b))改变。 这在施加外部磁场之前由箭头示出,但是它们可以例如对准。 描述了许多不同结构的磁阻介质。