会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Employing Topic Models for Semantic Class Mining
    • 采用主题模型进行语义类挖掘
    • US20120030206A1
    • 2012-02-02
    • US12846064
    • 2010-07-29
    • Shuming ShiJi-Rong Wen
    • Shuming ShiJi-Rong Wen
    • G06F17/30
    • G06F17/30864G06F17/30707
    • A topic modeling architecture is used to discover high-quality semantic classes from a large collection of raw semantic classes (RASCs) for use in generating responses to queries. A specific semantic class is identified from a collection of RASCs, and a preprocessing operation is conducted to remove one or more items with a semantic class frequency less than a predetermined threshold. A topic model is then applied to the specific semantic class for each of the items that remain in the specific semantic class after the preprocessing operation. A postprocessing operation is then conducted on the items of the specific semantic class to merge and sort the results of the topic model and generate final semantic classes for use by a search engine to respond to a query.
    • 主题建模架构用于从用于生成对查询的响应的大量原始语义类(RASC)集合中发现高质量语义类。 从RASC的集合中识别特定语义类,并且执行预处理操作以去除具有小于预定阈值的语义类频率的一个或多个项。 然后,在预处理操作之后,将主题模型应用于保留在特定语义类中的每个项目的特定语义类。 然后对特定语义类的项目进行后处理操作,以合并和排序主题模型的结果,并生成最终语义类,供搜索引擎使用以响应查询。
    • 4. 发明授权
    • Employing topic models for semantic class mining
    • 采用语义类挖掘的主题模型
    • US08874581B2
    • 2014-10-28
    • US12846064
    • 2010-07-29
    • Shuming ShiJi-Rong Wen
    • Shuming ShiJi-Rong Wen
    • G06F17/30
    • G06F17/30864G06F17/30707
    • A topic modeling architecture is used to discover high-quality semantic classes from a large collection of raw semantic classes (RASCs) for use in generating responses to queries. A specific semantic class is identified from a collection of RASCs, and a preprocessing operation is conducted to remove one or more items with a semantic class frequency less than a predetermined threshold. A topic model is then applied to the specific semantic class for each of the items that remain in the specific semantic class after the preprocessing operation. A postprocessing operation is then conducted on the items of the specific semantic class to merge and sort the results of the topic model and generate final semantic classes for use by a search engine to respond to a query.
    • 主题建模架构用于从用于生成对查询的响应的大量原始语义类(RASC)集合中发现高质量语义类。 从RASC的集合中识别特定语义类,并且执行预处理操作以去除具有小于预定阈值的语义类频率的一个或多个项。 然后,在预处理操作之后,将主题模型应用于保留在特定语义类中的每个项目的特定语义类。 然后对特定语义类的项目进行后处理操作,以合并和排序主题模型的结果,并生成最终语义类,供搜索引擎使用以响应查询。
    • 5. 发明授权
    • Query selection for effectively learning ranking functions
    • 查询选择有效学习排名功能
    • US08112421B2
    • 2012-02-07
    • US11781220
    • 2007-07-20
    • Nan SunQing YuShuming ShiJi-Rong Wen
    • Nan SunQing YuShuming ShiJi-Rong Wen
    • G06F17/30
    • G06F17/30675
    • A learning system for a search ranking function model may include a computer program that iteratively refines the model using new queries and associated documents from an unlabeled training set. The unlabeled training set may include a set of queries for which the associated documents have not been labeled as “relevant” or otherwise labeled. The new queries may be selected based on a similarity to and an accuracy of each neighbor from a labeled training set, such as a labeled validation set. Upon selection, the documents associated with the new queries may be labeled. The new queries and their associated documents may be accumulated into a labeled training set, such as a labeled training set, and a refined model may be learned based on the augmented labeled training set. The model may be iteratively refined until it is determined that the model is adequate.
    • 用于搜索排序功能模型的学习系统可以包括使用来自未标记训练集合的新查询和相关联文档迭代地提炼模型的计算机程序。 未标记的训练集可以包括一组查询,其中相关联的文档未被标记为“相关”或以其他方式标记。 可以基于与标记的训练集(例如标记的验证集)的每个邻居的相似性和准确性来选择新的查询。 选择后,与新查询相关联的文档可能被标记。 新查询及其相关联的文档可以被累积到诸如标记的训练集之类的标记训练集中,并且可以基于增强的标记训练集来学习精细模型。 可以迭代地改进该模型,直到确定该模型是足够的。
    • 9. 发明授权
    • Pseudo-anchor text extraction
    • 伪锚文本提取
    • US08073838B2
    • 2011-12-06
    • US12697056
    • 2010-01-29
    • Shuming ShiJi-Rong WenMingjie ZhuFei XingZaiqing Nie
    • Shuming ShiJi-Rong WenMingjie ZhuFei XingZaiqing Nie
    • G06F17/30
    • G06F17/30616G06F17/30864Y10S707/99932
    • A search method uses pseudo-anchor text associated with search objects to improve search performance. The pseudo-anchor text may be extracted in combination with an identifier of the search objects (such as a pseudo-URL) from a digital corpus such as a collection of documents. Pseudo-anchor texts for each object are preferably extracted from candidate anchor blocks using a machine learning based approach. The pseudo-anchor texts are made available for searching and used to help rank the objects in a search result to improve search performance. The method may be used in vertical search of objects such as published articles, products and images that lack explicit URLs and anchor text information.
    • 搜索方法使用与搜索对象相关联的伪锚文本来改善搜索性能。 伪锚文本可以与来自诸如文档集合的数字语料库的搜索对象(诸如伪URL)的标识符组合提取。 优选地,使用基于机器学习的方法从候选锚块中提取每个对象的伪锚文本。 伪锚文本可用于搜索,并用于帮助对搜索结果中的对象进行排名以提高搜索性能。 该方法可以用于垂直搜索诸如已发表的文章,产品和缺乏明确的URL和锚文本信息的图像的对象。