会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • RADIANT SUPERHEATER
    • 辐射超级加热器
    • WO2013008130A3
    • 2014-01-09
    • PCT/IB2012053370
    • 2012-07-03
    • FOSTER WHEELER NORTH AMERICA CORPSELTZER ANDREWFAN ZHENHACK HORSTGAGLIANO MICHAELSTANKO GREGORY
    • SELTZER ANDREWFAN ZHENHACK HORSTGAGLIANO MICHAELSTANKO GREGORY
    • F22G1/06F22G1/00F22G1/08F22G7/00F22G7/08
    • F22G1/06F22G1/08
    • A radiant superheater (26) arranged to hang at the upper portion of a furnace (12) of a boiler. The radiant superheater (26) is substantially planar and includes a first vertical (34) pass, a first connection pass (36), a second vertical pass (38), a third vertical pass (40), a second connection pass (42), and a fourth vertical pass (44). Each vertical pass includes an upper end and a lower end. The vertical passes are connected in series, so that steam to be superheated enters at the upper end of the first vertical pass and flows through the first vertical pass and from the lower end of the first vertical pass via the first connection pass to the lower end of the second vertical pass and through the second vertical pass and from the upper end of the second vertical pass to the upper end of the third vertical pass and through the third vertical pass and from the lower end of the third vertical pass via the second connection pass to the lower end of the fourth vertical pass and through the fourth vertical pass, to be discharged from the upper end of the fourth vertical pass. The first connection pass is arranged below the second connection pass so as to shield the second connection pass from radiation from the lower portion of the furnace.
    • 辐射过热器(26)布置成悬挂在锅炉的炉子(12)的上部。 辐射过热器(26)基本上是平面的,并且包括第一垂直(34)通道,第一连接通道(36),第二垂直通道(38),第三垂直通道(40),第二连接通道(42) ,和第四垂直通道(44)。 每个垂直通道包括上端和下端。 垂直通道串联连接,使得过热蒸汽进入第一垂直通道的上端,并通过第一垂直通道并从第一垂直通道的下端经由第一连接通道流到下端 的第二垂直行程,并且通过第二垂直行程,并且从第二垂直行程的上端到第三垂直行程的上端,并且经过第三垂直行程,并且从第三垂直行程的下端经由第二连接 通过第四垂直行程的下端并通过第四垂直行程从第四垂直行程的上端排出。 第一连接通道被布置在第二连接通道下方,以便屏蔽来自熔炉下部的辐射的第二连接通道。
    • 3. 发明申请
    • RADIANT SUPERHEATER
    • 辐射超级加热器
    • WO2013008130A2
    • 2013-01-17
    • PCT/IB2012/053370
    • 2012-07-03
    • FOSTER WHEELER NORTH AMERICA CORP.SELTZER, AndrewFAN, ZhenHACK, HorstGAGLIANO, MichaelSTANKO, Gregory
    • SELTZER, AndrewFAN, ZhenHACK, HorstGAGLIANO, MichaelSTANKO, Gregory
    • F22G1/06F22G1/08
    • A radiant superheater arranged to hang at the upper portion of a furnace of a boiler. The radiant superheater is substantially planar and includes a first vertical pass, a first connection pass, a second vertical pass, a third vertical pass, a second connection pass, and a fourth vertical pass. Each vertical pass includes an upper end and a lower end. The vertical passes are connected in series, so that steam to be superheated enters at the upper end of the first vertical pass and flows through the first vertical pass and from the lower end of the first vertical pass via the first connection pass to the lower end of the second vertical pass and through the second vertical pass and from the upper end of the second vertical pass to the upper end of the third vertical pass and through the third vertical pass and from the lower end of the third vertical pass via the second connection pass to the lower end of the fourth vertical pass and through the fourth vertical pass, to be discharged from the upper end of the fourth vertical pass. The first connection pass is arranged below the second connection pass so as to shield the second connection pass from radiation from the lower portion of the furnace.
    • 辐射过热器布置成悬挂在锅炉炉的上部。 辐射过热器基本上是平面的,包括第一垂直通道,第一连接通道,第二垂直通道,第三垂直通道,第二连接通道和第四垂直通道。 每个垂直通道包括上端和下端。 垂直通道串联连接,使得过热蒸汽进入第一垂直通道的上端,并通过第一垂直通道并从第一垂直通道的下端经由第一连接通道流到下端 的第二垂直行程,并且通过第二垂直行程,并且从第二垂直行程的上端到第三垂直行程的上端,并且经过第三垂直行程,并且从第三垂直行程的下端经由第二连接 通过第四垂直行程的下端并通过第四垂直行程从第四垂直行程的上端排出。 第一连接通道被布置在第二连接通道下方,以便屏蔽来自熔炉下部的辐射的第二连接通道。
    • 4. 发明申请
    • METHOD OF CONTROLLING A BOILER PLANT DURING SWITCHOVER FROM AIR-COMBUSTION TO OXYGEN-COMBUSTION
    • 在从空气燃烧到氧气燃烧期间控制锅炉设备的方法
    • WO2011148298A2
    • 2011-12-01
    • PCT/IB2011/052177
    • 2011-05-18
    • FOSTER WHEELER NORTH AMERICA CORP.SELTZER, AndrewFAN, ZhenHACK, Horst
    • SELTZER, AndrewFAN, ZhenHACK, Horst
    • F23L7/00
    • F23L7/007Y02E20/344
    • A method of controlling a boiler plant during a switchover period from an air- combustion mode to an oxygen-combustion mode. The method includes steps of feeding fuel into a furnace of the boiler plant at a rate determined by a fuel feeding scheme, feeding air into the furnace at a rate determined by a descending air feeding scheme, feeding substantially pure oxygen into the furnace at a rate determined by an ascending oxygen feeding scheme, and recirculating flue gas into the furnace at a rate determined by an ascending flue gas recirculating scheme. The fuel feeding scheme, the air feeding scheme and the oxygen feeding scheme are such that the fuel is combusted and the flue gas containing residual oxygen is produced. Also, the fuel feeding scheme, the air feeding scheme and the oxygen feeding scheme are such that the content of residual oxygen in the flue gas is, during at least a portion of the switchover period, greater than during any of the air-combustion mode and the oxygen-combustion mode. The method makes it possible to reduce CO 2 emissions and O 2 consumption quickly during the short switchover period.
    • 一种在从空气燃烧模式到氧气燃烧模式的切换期间控制锅炉设备的方法。 该方法包括以燃料供给方案确定的速率将燃料供给到锅炉的炉中的步骤,以由下降空气供给方案确定的速率将空气进入炉中,以基本上纯的氧气以一定的速率 由上升的氧气供给方案确定,并且以烟道气再循环方案确定的速率将烟道气再循环到炉中。 燃料供给方案,供气方案和供氧方式是燃料燃烧,并且产生含有残余氧气的烟道气。 此外,燃料供给方案,空气供给方案和供氧方案是这样的,即在至少部分切换期间内,废气中的残余氧含量大于空气燃烧模式 和氧气燃烧模式。 该方法可以在短时间内快速减少二氧化碳排放量和氧气消耗。
    • 5. 发明申请
    • EMISSIONLESS OXYFUEL COMBUSTION PROCESS AND A COMBUSTION SYSTEM USING SUCH A PROCESS
    • 无发动机氧化燃烧过程和使用这种工艺的燃烧系统
    • WO2011073890A1
    • 2011-06-23
    • PCT/IB2010/055788
    • 2010-12-14
    • FOSTER WHEELER ENERGY CORPORATIONFAN, ZhenSELTZER, AndrewHACK, Horst
    • FAN, ZhenSELTZER, AndrewHACK, Horst
    • F23C9/00F23L7/00F23J15/00F23J15/02
    • F23C9/00F23C2202/30F23J15/006F23J15/02F23J2215/50F23J2900/15061F23L7/007F23L2900/07001Y02E20/322Y02E20/344
    • A method of combusting carbonaceous fuel in a combustion system. The combustion system includes a source of oxygen and a furnace. The method includes the steps of (a) feeding fuel and combustion gas including oxygen and recycling gas into the furnace for combusting the fuel with the oxygen and producing exhaust gas that includes CO 2 , water and excess oxygen as its main components, (b) conducting the exhaust gas discharged from the furnace into a scrubber so as to remove pollutants from the exhaust gas, (c) dividing the exhaust gas into a first exhaust gas stream and a second exhaust gas stream, and conducting the second exhaust gas stream as a recycling gas stream into the furnace, (d) conducting the first exhaust gas stream into a CO 2 purification and capturing unit (CPU) to produce one or more condensate streams, a purified liquid CO 2 stream and a vent gas stream that includes remaining CO 2 , (e) discharging the purified liquid CO 2 stream from the combustion system, (f) conducting the vent gas stream into an adsorption unit so as to adsorb compounds, including remaining CO 2 , from the vent gas stream to an adsorbing material and to produce a pass-through gas stream, and (g) regenerating the adsorbing material to produce a desorbed gas stream that includes at least a portion of the adsorbed compounds, and conducting at least a portion of the desorbed gas stream into the furnace.
    • 一种在燃烧系统中燃烧碳质燃料的方法。 燃烧系统包括氧源和炉。 该方法包括以下步骤:(a)将包括氧气和再循环气体的燃料和燃烧气体送入炉中,用于燃烧燃料与氧气并产生包含CO 2,水和过量氧气的废气作为其主要成分,(b)导电 废气从炉排出到洗涤器中,以排除废气中的污染物,(c)将排气分成第一废气流和第二废气流,并将第二废气流作为回收 (d)将第一废气流引入二氧化碳净化和捕集单元(CPU)以产生一个或多个冷凝物流,纯化的液体CO 2流和包括剩余CO 2的排出气流(e )从燃烧系统排出净化的液体CO 2流,(f)将排出气流引入吸附单元,以将包括剩余CO 2在内的化合物从排放气流吸附到吸附剂 并且产生直通气体流,和(g)再生吸附材料以产生包含至少一部分吸附化合物的解吸气流,并将至少一部分解吸的气流导入到 炉。
    • 6. 发明申请
    • A METHOD OF INCREASING THE PERFORMANCE OF A CARBONACEOUS FUEL COMBUSTING BOILER SYSTEM
    • 一种提高燃烧燃烧锅炉系统性能的方法
    • WO2011048520A3
    • 2013-08-01
    • PCT/IB2010054464
    • 2010-10-04
    • FOSTER WHEELER ENERGY CORPFAN ZHENHACK HORSTSELTZER ANDREW
    • FAN ZHENHACK HORSTSELTZER ANDREW
    • F01K13/02F01K7/22F01K7/38F01K7/40
    • F01K7/22F01K7/38F01K7/40F01K13/02
    • A method of increasing the power of a carbonaceous fuel combusting boiler system. The method includes the steps of (a) feeding carbonaceous fuel (16) into a furnace (14) of the boiler plant at a fuel feeding rate, (b) feeding oxidant gas (18) into the furnace for combusting the fuel to produce exhaust gas, (c) discharging the exhaust gas from the furnace via an exhaust gas channel (20), (d) conveying a stream of feedwater from a boiler economizer (38) arranged in the exhaust gas channel to evaporating and superheating heat exchange surfaces arranged in the furnace and in the exhaust gas channel for converting the feedwater to superheated steam, (e) expanding the superheated steam in a high-pressure steam turbine (50) for generating power, (f) extracting steam (74) from the high-pressure steam turbine at a decreased rate for preheating the feedwater, (g) conveying steam from the high-pressure steam turbine at an increased rate to a reheater (36) arranged in the exhaust gas channel for generating reheated steam, (h) expanding the reheated steam in an intermediate pressure steam turbine (52) for generating power, and (i) conveying the exhaust gas in the exhaust gas channel from the reheater through a boiler economizer to a gas heater (42). The method also includes increasing the heat exchange surface area of at least one of the reheater and the boiler economizer and/ or adding a high pressure economizer downstream of the boiler economizer and upstream of the gas heater.
    • 一种提高含碳燃料燃烧锅炉系统功率的方法。 该方法包括以下步骤:(a)以燃料供给速率将碳质燃料(16)进料到锅炉设备的炉子(14)中,(b)将氧化剂气体(18)供入炉中以燃烧燃料以产生排气 气体,(c)经由排气通道(20)从炉内排出废气;(d)从布置在排气通道中的锅炉节能器(38)输送给水流以蒸发和过热热交换面 (e)在用于发电的高压蒸汽轮机(50)中膨胀过热蒸汽,(f)从高压蒸汽涡轮机(50)中提取蒸汽(74) (g)将来自高压蒸气轮机的蒸汽以增加的速率输送到布置在废气通道中的再热器(36),以产生再热蒸汽,(h)将蒸汽涡轮膨胀, 中间蒸汽再加热蒸汽 用于产生动力的可靠的蒸汽轮机(52),以及(i)将废气通道中的废气从再热器通过锅炉节能器输送到气体加热器(42)。 该方法还包括增加再热器和锅炉节能器中的至少一个的热交换表面积和/或在锅炉节能器下游和气体加热器的上游添加高压节能器。
    • 8. 发明申请
    • METHOD OF CONTROLLING A BOILER PLANT DURING SWITCHOVER FROM AIR-COMBUSTION TO OXYGEN-COMBUSTION
    • 在从空气燃烧到氧气燃烧期间控制锅炉设备的方法
    • WO2011148298A3
    • 2013-05-16
    • PCT/IB2011052177
    • 2011-05-18
    • FOSTER WHEELER NORTH AMERICA CORPSELTZER ANDREWFAN ZHENHACK HORST
    • SELTZER ANDREWFAN ZHENHACK HORST
    • F23L7/00
    • F23L7/007Y02E20/344
    • A method of controlling a boiler plant during a switchover period from an air- combustion mode to an oxygen-combustion mode. The method includes steps of feeding fuel into a furnace of the boiler plant at a rate determined by a fuel feeding scheme, feeding air into the furnace at a rate determined by a descending air feeding scheme, feeding substantially pure oxygen into the furnace at a rate determined by an ascending oxygen feeding scheme, and recirculating flue gas into the furnace at a rate determined by an ascending flue gas recirculating scheme. The fuel feeding scheme, the air feeding scheme and the oxygen feeding scheme are such that the fuel is combusted and the flue gas containing residual oxygen is produced. Also, the fuel feeding scheme, the air feeding scheme and the oxygen feeding scheme are such that the content of residual oxygen in the flue gas is, during at least a portion of the switchover period, greater than during any of the air-combustion mode and the oxygen-combustion mode. The method makes it possible to reduce CO2 emissions and O2 consumption quickly during the short switchover period.
    • 一种在从空气燃烧模式到氧气燃烧模式的切换期间控制锅炉设备的方法。 该方法包括以燃料供给方案确定的速率将燃料供给到锅炉的炉中的步骤,以由下降空气供给方案确定的速率将空气进入炉中,以基本上纯的氧气以一定的速率 由上升的氧气供给方案确定,并且以烟道气再循环方案确定的速率将烟道气再循环到炉中。 燃料供给方案,供气方案和供氧方式是燃料燃烧,并且产生含有残余氧气的烟道气。 此外,燃料供给方案,空气供给方案和供氧方案是这样的,即在至少部分切换期间内,废气中的残余氧含量大于空气燃烧模式 和氧气燃烧模式。 该方法可以在短时间内快速减少二氧化碳排放量和氧气消耗。
    • 9. 发明申请
    • A METHOD OF INCREASING THE PERFORMANCE OF A CARBONACEOUS FUEL COMBUSTING BOILER SYSTEM
    • 一种提高燃烧燃烧锅炉系统性能的方法
    • WO2011048520A2
    • 2011-04-28
    • PCT/IB2010/054464
    • 2010-10-04
    • FOSTER WHEELER ENERGY CORPORATIONFAN, ZhenHACK, HorstSELTZER, Andrew
    • FAN, ZhenHACK, HorstSELTZER, Andrew
    • F01K7/22F01K7/38F01K7/40F01K13/02
    • A method of increasing the power of a carbonaceous fuel combusting boiler system. The method includes the steps of(a)feeding carbonaceous fuel into a furnace of the boiler plant at a fuel feeding rate, (b)feeding oxidant gas into the furnace for combusting the fuel to produce exhaust gas, (c)discharging the exhaust gas from the furnace via an exhaust gas channel, (d)conveying a stream of feedwater from a boiler economizer arranged in the exhaust gas channel to evaporating and superheating heat exchange surfaces arranged in the furnace and in the exhaust gas channel for converting the feedwater to superheated steam, (e) expanding the superheated steam in a high-pressure steam turbine for generating power, (f) extracting steam from the high-pressure steam turbine at a decreased rate for preheating the feedwater, (g) conveying steam from the high-pressure steam turbine at an increased rate to a reheater arranged in the exhaust gas channel for generating reheated steam, (h) expanding the reheated steam in an intermediate pressure steam turbine for generating power, and (i) conveying the exhaust gas in the exhaust gas channel from the reheater through a boiler economizer to a gas heater. The method also includes increasing the heat exchange surface area of at least one of the reheater and the boiler economizer and/or adding a high pressure economizer downstream of the boiler economizer and upstream of the gas heater.
    • 一种提高含碳燃料燃烧锅炉系统功率的方法。 该方法包括以下步骤:(a)以燃料供给速率将碳质燃料送入锅炉设备的炉中;(b)将氧化剂气体送入炉内以燃烧燃料以产生废气,(c)排出废气 (d)从布置在废气通道中的锅炉节能器输送给水流,使排放在炉子和废气通道中的热交换表面蒸发并过热,以将给水转化为过热 蒸汽,(e)在用于发电的高压蒸汽轮机中膨胀过热蒸汽,(f)以较低的速率从高压蒸汽轮机提取蒸汽以预热给水,(g) (h)在用于发电的中压蒸汽轮机中使再热蒸汽膨胀,以及 (i)将废气通道中的废气从再热器通过锅炉节能器输送到气体加热器。 该方法还包括增加再热器和锅炉节能器中的至少一个的热交换表面积和/或在锅炉节能器下游和气体加热器的上游添加高压节能器。