会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Outlier correction
    • 异常值校正
    • US07239984B2
    • 2007-07-03
    • US11021674
    • 2004-12-23
    • Ralph Moessner
    • Ralph Moessner
    • H03F1/26H04B15/00G06F17/18
    • G06Q10/04
    • The invention provides methods and apparatus, including computer program products, for correcting outlier values in a series of values representing a predetermined numerical parameter over time. For predetermined time interval with a beginning (b) and end (e) point of the time series, an ex-post forecast time series (s_ep) is calculated using the historical time series (s_h) and a predetermined model function (f). Lower and upper tolerance limit lines are defined using (s_ep) and on a quality function (qf) over the time interval. Beginning at (b), (s_h) is corrected by replacing the first value outside of the tolerance lines by a predetermined value inside the tolerance lines. The (s_ep) is recalculated using (s_h) and (f). The tolerance lines are redefined using the recalculated (s_ep) and (qf) that takes only values where the last outlier value has been replaced. These steps are repeated until all (s_h) outlier values have been replaced.
    • 本发明提供了一种方法和装置,包括计算机程序产品,用于在一段时间内表示预定数值参数的一系列值中校正异常值。 对于具有时间序列的开始(b)和结束(e)点的预定时间间隔,使用历史时间序列(s_h)和预定模型函数(f)计算事后预测时间序列(s_ep)。 下限和上限公差限制线使用(s_ep)和质量函数(qf)在时间间隔内定义。 从(b)开始,(s_h)通过将公差线以外的第一值替换为公差线内的预定值来校正。 (s_ep)使用(s_h)和(f)重新计算。 使用重新计算的(s_ep)和(qf)重新定义公差线,该值仅采用最后异常值被替换的值。 重复这些步骤,直到所有(s_h)异常值被替换为止。
    • 4. 发明申请
    • Outlier correction
    • 异常值校正
    • US20050137835A1
    • 2005-06-23
    • US11021674
    • 2004-12-23
    • Ralph Moessner
    • Ralph Moessner
    • G06F11/30
    • G06Q10/04
    • The invention provides methods and apparatus, including computer program products, for correcting outlier values in a series of values over time, the values representing a predetermined numerical parameter, the method comprising the following steps: for a predetermined time interval of the time series, the time interval having a beginning point and an end point, calculating an ex-post forecast time series on the basis of the historical time series and a predetermined model function; defining a lower tolerance limit line and an upper tolerance limit line on the basis of the ex-post forecast time series and on a quality function over the time interval; beginning at the beginning point of the time interval, correcting the historical time series by replacing the first value of the historical time series outside of the tolerance lines by a predetermined value not outside the tolerance lines; recalculating the ex-post forecast time series on the basis of the corrected historical time series (s_h) and the predetermined model function; and redefining the tolerance lines on the basis of the recalculated ex-post forecast time series (s_ep) and the quality function, whereby the quality function (qf) takes only values into account until the time point where the last outlier value has been replaced; repeating the above steps until all outlier values of the historical time series have been replaced.
    • 本发明提供了一种方法和装置,包括计算机程序产品,用于随时间校正一系列值中的异常值,该值表示预定数值参数,该方法包括以下步骤:对于该时间序列的预定时间间隔, 具有起点和终点的时间间隔,基于历史时间序列和预定模型函数计算后期预测时间序列; 基于后期预测时间序列和在时间间隔上的质量函数来定义下限公差限制线和上限公制限制线; 从时间间隔的开始点开始,通过将公差线以外的历史时间序列的第一值替换为不在公差线之外的预定值来校正历史时间序列; 根据校正历史时间序列(s_h)和预定模型函数重新计算后期预测时间序列; 并根据重新计算的后期预测时间序列(s_ep)和质量函数重新定义公差线,由此质量函数(qf)仅考虑值,直到最后异常值被替换的时间点为止; 重复上述步骤,直到历史时间序列的所有异常值被替换。
    • 5. 发明授权
    • Systems and methods for forecasting demand of an object in a managed supply chain
    • 管理供应链中对象需求预测的系统和方法
    • US08341007B2
    • 2012-12-25
    • US11017764
    • 2004-12-22
    • Ralph Moessner
    • Ralph Moessner
    • G06Q10/00
    • G06Q30/02G06Q10/04G06Q30/0202
    • Systems and methods are disclosed for forecasting demand for objects, such as products, parts, etc. in a managed supply chain. In one embodiment, a method for forecasting demand is provided that comprises the step of determining a forecast profile including a forecast model and a forecast parameter to be assigned to a set of data forming the basis of the forecast. The determining step may include the steps of performing at least one forecast test on the set of data to identify the significance of a forecast model in the set of data, and determining iteratively the value of a forecast parameter, wherein the forecast parameter is determined based on the outcome of performing the at least one forecasting test. Further, the method may include the step of automatically assigning the determined forecast profile to the set of data.
    • 公开了用于在被管理的供应链中预测对象(例如产品,零件等)的需求的系统和方法。 在一个实施例中,提供了一种用于预测需求的方法,其包括确定包括预测模型和预测参数的预测简档的步骤,以分配给形成预测基础的一组数据。 确定步骤可以包括以下步骤:对该组数据执行至少一个预测测试以识别该组数据中的预测模型的重要性,以及迭代地确定预测参数的值,其中基于该预测参数确定预测参数 关于执行至少一个预测测试的结果。 此外,该方法可以包括将确定的预测轮廓自动分配给该组数据的步骤。
    • 6. 发明授权
    • Outlier correction with a median method
    • 用中值法进行异常值校正
    • US08185347B2
    • 2012-05-22
    • US11021591
    • 2004-12-23
    • Ralph MoessnerStefan Theis
    • Ralph MoessnerStefan Theis
    • H04B15/00G06F11/30G21C17/00
    • G06Q10/10
    • A method and apparatus, including computer program products, for determining characteristic parameters on the basis of a series of m values, H_1, H_2, . . . , H_m, over time. The values are descriptive for a predetermined process, and the series has linear characteristics. Differences, denoted as Δ_i, between pairs of values of points of the historical time series, the points having a predetermined time distance to each other, denoted as p are computed. The median value, denoted as Δ_i_M, of the computed differences Δ_i is determined. On the basis of the determined median value Δ_i_M, a trend parameter, denoted as T, T being defined as T=Δ_1_M/p is computed.
    • 一种用于基于一系列m个值H_1,H_2,...确定特征参数的计算机程序产品的方法和装置。 。 。 ,H_m,随着时间的流逝。 这些值对于预定的处理是描述性的,并且该系列具有线性特征。 在历史时间序列的点对值对之间表示为&Dgr; _i的差异,计算表示为p的彼此之间具有预定时间距离的点。 确定计算出的差值Dgr; _i的中值,表示为&Dgr; _i_M。 基于确定的中值&Dgr; __M,计算T =&Dgr; _1_M / p表示为T,T的趋势参数。
    • 8. 发明申请
    • Systems and methods for forecasting demand of an object in a managed supply chain
    • 管理供应链中对象需求预测的系统和方法
    • US20050165635A1
    • 2005-07-28
    • US11017764
    • 2004-12-22
    • Ralph Moessner
    • Ralph Moessner
    • G06F17/60
    • G06Q30/02G06Q10/04G06Q30/0202
    • Systems and methods are disclosed for forecasting demand for objects, such as products, parts, etc. in a managed supply chain. In one embodiment, a method for forecasting demand is provided that comprises the step of determining a forecast profile including a forecast model and a forecast parameter to be assigned to a set of data forming the basis of the forecast. The determining step may include the steps of performing at least one forecast test on the set of data to identify the significance of a forecast model in the set of data, and determining iteratively the value of a forecast parameter, wherein the forecast parameter is determined based on the outcome of performing the at least one forecasting test. Further, the method may include the step of automatically assigning the determined forecast profile to the set of data.
    • 公开了用于在被管理的供应链中预测对象(例如产品,零件等)的需求的系统和方法。 在一个实施例中,提供了一种用于预测需求的方法,其包括确定包括预测模型和预测参数的预测简档的步骤,以分配给形成预测基础的一组数据。 确定步骤可以包括以下步骤:对该组数据执行至少一个预测测试以识别该组数据中的预测模型的重要性,以及迭代地确定预测参数的值,其中基于该预测参数确定预测参数 关于执行至少一个预测测试的结果。 此外,该方法可以包括将确定的预测轮廓自动分配给该组数据的步骤。
    • 9. 发明申请
    • Outlier correction with a median method
    • 用中值法进行异常值校正
    • US20050137830A1
    • 2005-06-23
    • US11021591
    • 2004-12-23
    • Ralph MoessnerStefan Theis
    • Ralph MoessnerStefan Theis
    • G04F1/00
    • G06Q10/10
    • The invention provides methods and apparatus, including computer program products, for determining characteristic parameters on the basis of a series of m values, H_1, H_2, . . . , H_m, over time, the values being descriptive for a predetermined process, the series having linear characteristics, the method comprising: computing differences, denoted as Δ_i, between pairs of values of points of the historical time series, the points having a predetermined time distance to each other, denoted as p; determining the median value, denoted as Δ_i_M, of the computed differences Δ_i; computing, on the basis of the determined median value Δ_i_M, a trend parameter, denoted as T, T being defined as T=Δ_i_M/p.
    • 本发明提供了用于基于一系列m值H_1,H_2来确定特征参数的方法和装置,包括计算机程序产品。 。 。 H_m,随着时间的推移,这些值对于预定的处理是描述的,该系列具有线性特征,该方法包括:在历史时间序列的点对值之间计算表示为Delta_i的差异,所述点具有预定时间 彼此之间的距离,表示为p; 确定所计算的差Δiii的中值,表示为Delta_i_M; 基于确定的中值Delta_i_M计算表示为T,T的趋势参数被定义为T = Delta_i_M / p。