会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明专利
    • Multiplication table learning tool
    • 多功能表学习工具
    • JP2011158701A
    • 2011-08-18
    • JP2010020196
    • 2010-02-01
    • Noriyuki AizawaEtsuo ArakawaEriko FukamizuHitoshi Kamogawa深水 映里子相澤 則行荒川 悦雄仁 鴨川
    • ARAKAWA ETSUOAIZAWA NORIYUKIKAMOGAWA HITOSHIFUKAMIZU ERIKO
    • G09B19/02G06C3/00
    • PROBLEM TO BE SOLVED: To provide a device enabling a learner of multiplication table to experience the joy of finding a mathematical regularity by himself/herself or to experience unexpected mathematical depth by utilizing, as an exploring activity, the process where a table is used for the process of checking the relation between the multiplier and the multiplicand.
      SOLUTION: A learning tool for visually checking the result of regular arithmetic operation in a multiplication table by introducing the concept of logarithm where the product can be expressed by the sum is provided. The multiplication table learning tool comprises, as shown by the signs 1 and 2 in Fig. 3, a display body having a face displaying the entire relations in the multiplication table in a two-dimensional drawing, and a slide rule to be used in a superposed state, and a logarithmic scale in the same reduction scale is marked on each of them. As shown by the signs 1k and 2d in Fig.3, marks functioning as a mechanism for setting the use position of the slide rule for each multiplicand are provided on the display body and the slide rule and, by setting the position of the slide rule, the value of the product of multiplication is read. A user can take an overview of the entire relations in the multiplication table and can intuitively explore the regularity.
      COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:提供一种能够让乘法表的学习者体验自己或她自己找到数学规律性的喜悦,或通过利用作为探索活动的过程来体验意想不到的数学深度的装置,其中表 用于检查乘数和被乘数之间的关系的过程。

      解决方案:提供了一种用于通过引入乘积可以表示乘积的对数概念来在乘法表中目视检查常规算术运算结果的学习工具。 乘法表学习工具包括如图1中的符号1和2所示。 如图3所示,具有在二维图中显示乘法表中的整体关系的面的显示体和叠加状态中使用的滑动规则,并且在每个显示体上标记相同缩小比例的对数标尺 。 如图3中的符号1k和2d所示,作为用于设置每个被乘数的滑动规则的使用位置的机构的标记被提供在显示体和滑动规则上,并且通过设置滑动规则的位置 读取乘法乘积的值。 用户可以对乘法表中的整个关系进行概述,并可以直观地探索规则性。 版权所有(C)2011,JPO&INPIT

    • 8. 发明授权
    • Method and device for simultaneous measurement of magnetostriction and magnetization
    • 用于同时测量磁致伸缩和磁化的方法和装置
    • US08036338B2
    • 2011-10-11
    • US11887265
    • 2005-11-24
    • Etsuo ArakawaNoriyuki AizawaKoichi Maruyama
    • Etsuo ArakawaNoriyuki AizawaKoichi Maruyama
    • G01N23/20
    • G01N23/20G01R33/16
    • Since measurement of magnetostriction is accompanied by measurement of magnetization, magnetostriction and magnetization are measured conventionally by separately prepared devices, with efforts for observing the same region of the sample. Measurement of the magnetostriction is difficult due to the difficulty of compensation and calibration. The value of magnetostriction coefficient in low temperature region cannot be correctly determined. A convenient method which can measure magnetostriction and magnetization simultaneously at the same region of the sample and at the same time is developed by combining the method of measurement of magnetostriction by X-ray diffraction and the method of measurement of magnetic X-ray diffraction. The observed X-ray diffraction intensity as a function of the magnetic field from the sample can be separated to symmetric component and asymmetric component, which contain signals proportional to the magnetostriction and magnetization, respectively.
    • 由于磁致伸缩的测量伴随着磁化的测量,磁致伸缩和磁化通常由单独制备的器件测量,同时努力观察样品的相同区域。 由于难以补偿和校准,磁致伸缩的测量是困难的。 低温区域的磁致伸缩系数值无法正确确定。 通过将X射线衍射测量的磁致伸缩方法与磁X射线衍射的测量方法结合起来,可以在样品的同一区域同时测量磁致伸缩和磁化的方便方法。 作为来自样品的磁场的函数的观察到的X射线衍射强度可以分离成对称分量和不对称分量,其分别包含与磁致伸缩和磁化成正比的信号。
    • 10. 发明申请
    • Method and Device for Simultaneous Measurement of Magnetostriction and Magnetization
    • 用于同时测量磁致伸缩和磁化的方法和装置
    • US20100013469A1
    • 2010-01-21
    • US11887265
    • 2005-11-24
    • Etsuo ArakawaNoriyuki AizawaKoichi Maruyama
    • Etsuo ArakawaNoriyuki AizawaKoichi Maruyama
    • G01R33/02
    • G01N23/20G01R33/16
    • Since a measurement of a magnetostriction is accompanied by a measurement of a magnetization of a sample to be measured, the magnetostriction and the magnetization are measured by separately prepared devices, with efforts for observing the coextensive volumes of the sample. Measurements of the magnetostriction and the magnetization are difficult due to the difficulty of correction and calibration. The value of macroscopic external mode magnetostrictive coefficient cannot be correctly determined at low temperature regions. A convenient method which enables the measurement of the magnetostriction and the magnetization simultaneously at the coextensive volumes of the sample, is developed by combining the method of the measurement of the magnetostriction by an X-ray diffraction method an the method of the X-ray magnetic diffraction method. This method comprises the steps of measuring the relative diffraction intensity change (δ) at ascending magnetic field and the descending magnetic field respectively in the magnetic field at the coextensive volumes of the sample, obtaining asymmetry component δA and symmetry component δS of the magnetic field (H) from the measured relative intensity change (δ) in the magnetic field at said volumes of said sample, obtaining magnetostrictive coefficient (δ100) at said volumes of the sample based on said asymmetry component (δS), and obtains relative magnetization (M/Ms) at said volumes of said sample based on the value (R′a) obtained by recomposing said asymmetry component (δA) and symmetry component (δS). This method is advantageous for calibration of devices, when using the condition wherein the microscopic value of crystallographical magnetostrictive coefficient measured by X-rays corresponds to the macroscopic value of external magnetostrictive coefficient.
    • 由于磁致伸缩的测量伴随着要测量的样品的磁化的测量,所以通过分别制备的器件测量磁致伸缩和磁化,同时努力观察样品的共同扩展体积。 由于校正和校准的困难,磁致伸缩和磁化的测量是困难的。 宏观外部磁致伸缩系数的值在低温区域无法正确确定。 通过将X射线衍射法的磁致伸缩测量方法与X射线磁场的方法结合起来,开发出能够在样品共同体积下同时测量磁致伸缩和磁化的方便方法 衍射法。 该方法包括以下步骤:在样品的共同体积的磁场中分别测量上升磁场和下降磁场的相对衍射强度变化(delta),获得不对称分量δA和磁场的对称分量δS( H)从所述样品的所述体积处的磁场中的测量的相对强度变化(delta)获得,基于所述不对称分量(deltaS)在样品的所述体积处获得磁致伸缩系数(Δ100),并获得相对磁化强度(M / Ms)基于通过重构所述不对称分量(deltaA)和对称分量(deltaS)而获得的值(R'a)的所述体积的所述样本。 当使用其中通过X射线测量的结晶磁致伸缩系数的微观值对应于外部磁致伸缩系数的宏观值的条件时,该方法对于器件的校准是有利的。