会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Ionized PVD with sequential deposition and etching
    • 电离PVD具有顺序沉积和蚀刻
    • US06755945B2
    • 2004-06-29
    • US10138049
    • 2002-05-03
    • Tugrul YasarGlyn ReynoldsFrank CerioBruce GittlemanMichael GrapperhausRodney Robison
    • Tugrul YasarGlyn ReynoldsFrank CerioBruce GittlemanMichael GrapperhausRodney Robison
    • C23C1434
    • H01L21/76843C23C14/046C23C14/345C23C14/358H01J37/321H01J37/34H01L21/2855H01L21/32131H01L21/76862H01L21/76865H01L21/76873H01L21/76877
    • An iPVD apparatus (20) is programmed to deposit material (10) into high aspect ratio submicron features (11) on semiconductor substrates (21) by cycling between deposition and etch modes within a vacuum chamber (30). The modes operate at different power and pressure parameters. Pressure of more than 50 mTorr, for example, is used for sputtering material from a target while pressure of less than a few mTorr, for example, is used to etch. Bias power on the substrate is an order of magnitude higher for etching, producing several hundred volt bias for etching, but only a few tens of volts for deposition. The alternating etching modes remove deposited material that overhangs edges of features on the substrate, removes some of the deposited material from the bottoms (15) of the features, and resputters the removed deposited material onto sidewalls (16) of the features. The substrate (21) is cooled during deposition and etching, and particularly during etching to substantially below 0° C. RF energy is coupled into the chamber (30) to form a high density plasma, with substantially higher RF power coupled during deposition than during etching. The substrate (21) is moved closer to the plasma source during etching than during deposition.
    • iPVD装置(20)被编程为通过在真空室(30)内的沉积和蚀刻模式之间循环来将材料(10)沉积到半导体衬底(21)上的高纵横比亚微米特征(11)中。 这些模式在不同的功率和压力参数下工作。 例如,使用超过50mTorr的压力用于从目标溅射材料,例如使用小于几mTorr的压力来蚀刻。 衬底上的偏置功率对于蚀刻而言高出一个数量级,产生几百伏的蚀刻偏压,但只有几十伏的电压用于沉积。 交替的蚀刻模式去除沉积在衬底上的特征边缘的沉积材料,从特征的底部(15)去除一些沉积的材料,并将去除的沉积材料重新计算到特征的侧壁(16)上。 衬底(21)在沉积和蚀刻期间被冷却,特别是在蚀刻期间基本上低于0℃.RF能耦合到腔室(30)中以形成高密度等离子体,在沉积期间具有比在 蚀刻。 在蚀刻期间,衬底(21)比沉积期间更靠近等离子体源。
    • 6. 发明授权
    • Immersed inductively—coupled plasma source
    • 浸入式电感耦合等离子体源
    • US06417626B1
    • 2002-07-09
    • US09796971
    • 2001-03-01
    • Jozef BrckaJohn DreweryMichael GrapperhausGerrit LeusinkGlyn ReynoldsMirko VukovicTugrul Yasar
    • Jozef BrckaJohn DreweryMichael GrapperhausGerrit LeusinkGlyn ReynoldsMirko VukovicTugrul Yasar
    • H01J724
    • H01J37/321
    • A plasma processing system having a plasma source that efficiently couple radiofrequency energy to a plasma within a vacuum processing space of a vacuum chamber. The plasma source comprises a dielectric trough, an inductive element, and a pair of slotted deposition shields. A chamber wall of the vacuum chamber includes an annular opening that receives the dielectric trough. The trough projects into the vacuum processing space to immerse the inductive element within the plasma. The spatial distribution of the RF energy inductively coupled from the inductive element to the plasma may be tailored by altering the slots in the slotted deposition shields, the configuration of the inductive element, and the thickness or geometry of the trough. The efficient inductive coupling of radiofrequency energy is particularly effective for creating a spatially-uniform large-area plasma for the processing of large-area substrates.
    • 一种等离子体处理系统,其具有在真空室的真空处理空间内有效地将射频能量耦合到等离子体的等离子体源。 等离子体源包括电介质槽,电感元件和一对开槽沉积屏蔽。 真空室的室壁包括接收电介质槽的环形开口。 槽进入真空处理空间以将电感元件浸入等离子体内。 从电感元件感应耦合到等离子体的RF能量的空间分布可以通过改变开槽的沉积屏蔽中的槽,电感元件的构造以及槽的厚度或几何形状来调整。 射频能量的高效感应耦合对于产生空间均匀的大面积等离子体来处理大面积衬底特别有效。
    • 9. 发明申请
    • Method of and apparatus for measuring and controlling substrate holder temperature using ultrasonic tomography
    • 使用超声波断层扫描测量和控制衬底保持器温度的方法和装置
    • US20050089077A1
    • 2005-04-28
    • US10994312
    • 2004-11-23
    • William JonesMichael GrapperhausAndrej Mitrovic
    • William JonesMichael GrapperhausAndrej Mitrovic
    • G01K11/24G01K11/22
    • G01K11/24
    • Ultrasonic transducers and tomographic techniques determine the temperature of a semiconductor substrate holder at all points on the substrate holder, thereby allowing comprehensive real-time control of the temperature of the substrate holder during a process, such as a semiconductor wafer etching process. An apparatus for measuring temperatures of respective portions of a substrate holder that supports a substrate (e.g., a semiconductor wafer) on which a process (e.g., an etching process) is carried out, and for controlling the temperatures of the respective portions in response to the measured temperatures, includes: an arrangement of at least one ultrasonic transducer arranged and configured to transmit ultrasonic energy through the substrate holder, and a data processor configured to calculate, during the process, the temperatures of the respective portions of the substrate holder based on respective propagation time delays of the ultrasonic energy through the respective portions.
    • 超声波换能器和断层摄影技术确定了衬底保持器上所有点处的半导体衬底保持器的温度,从而允许在诸如半导体晶片蚀刻工艺的工艺期间对衬底保持器的温度进行全面的实时控制。 一种用于测量支撑在其上执行工艺(例如,蚀刻工艺)的衬底(例如,半导体晶片)的衬底保持器的各个部分的温度的装置,并且用于响应于 所测量的温度包括:至少一个超声波换能器的布置,布置和配置成通过衬底保持器传输超声波能量;以及数据处理器,被配置为在该过程期间基于衬底保持器的相应部分的温度,基于 相应部分的超声能量的相应传播时间延迟。