会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 9. 发明授权
    • Ultrathin, molecular-sieving graphene oxide membranes for separations along with their methods of formation and use
    • 用于分离的超薄分子筛石墨烯氧化膜及其形成和使用方法
    • US09108158B2
    • 2015-08-18
    • US14180724
    • 2014-02-14
    • Miao YuHang Li
    • Miao YuHang Li
    • B01D71/02B01D67/00B01D53/22
    • B01D71/024B01D67/0046B01D69/12B01D71/021B01D2325/04B01D2325/12
    • Methods for forming an ultrathin GO membrane are provided. The method can include: dispersing a single-layered graphene oxide powder in deionized water to form a single-layered graphene oxide dispersion; centrifuging the graphene oxide dispersion to remove aggregated graphene oxide material from the single-layered graphene oxide dispersion; thereafter, diluting the single-layered graphene oxide dispersion by about ten times or more through addition of deionized water to the graphene oxide dispersion; and thereafter, passing the single-layered graphene oxide dispersion through a substrate such that a graphene oxide membrane is formed on the substrate. Filtration membranes are also provided and can include: a graphene oxide membrane having a thickness of about 1.8 nm to about 180 nm, with the graphene oxide membrane comprises about 3 to about 30 layers of graphene oxide flakes.
    • 提供了形成超薄GO膜的方法。 该方法可以包括:将单层石墨烯氧化物粉末分散在去离子水中以形成单层氧化石墨烯分散体; 离心氧化石墨烯分散体以从单层氧化石墨烯分散体去除聚集的石墨烯氧化物材料; 此后,通过向石墨烯氧化物分散体中加入去离子水将单层石墨烯氧化物分散体稀释约十倍或更多; 然后使单层氧化石墨烯分散体通过基板,使得在基板上形成石墨烯氧化膜。 还提供了过滤膜,并且可以包括:具有约1.8nm至约180nm厚度的石墨烯氧化物膜,石墨烯氧化物膜包含约3至约30层的氧化石墨烯薄片。
    • 10. 发明申请
    • ULTRA-MINIATURE FIBER-OPTIC PRESSURE SENSOR SYSTEM AND METHOD OF FABRICATION
    • 超微型光纤压力传感器系统和制造方法
    • US20120210797A1
    • 2012-08-23
    • US13440139
    • 2012-04-05
    • Miao YUHyungdae BAEXuming ZHANG
    • Miao YUHyungdae BAEXuming ZHANG
    • G01L9/00G02B1/12
    • G01L9/0079G02B6/262G02B6/4214G02B26/001
    • Ultra-miniature surface-mountable optical pressure sensor is constructed on an optical fiber. The sensor design utilizes an angled fiber tip which steers the optical axis of the optic fiber by 90°. The optical cavity is formed on the sidewall of the optic fiber. The optical cavity may be covered with a polymer-metal composite diaphragm to operate as a pressure transducer. Alternatively, a polymer-filled cavity may be constructed which does not need a reflective diaphragm. The sensor exhibits a sufficient linearity over the broad pressure range with a high sensitivity. The sensitivity of the sensor may be tuned by controlling the thickness of the diaphragm. Methods of batch production of uniform device-to-device optical pressure sensors of co-axial and cross-axial configurations are presented.
    • 超微型表面贴装光学压力传感器由光纤构成。 传感器设计采用倾斜的光纤尖端,将光纤的光轴转向90°。 光腔形成在光纤的侧壁上。 光学腔可以被聚合物 - 金属复合膜覆盖,以作为压力传感器工作。 或者,可以构造不需要反射隔膜的聚合物填充空腔。 传感器在宽的压力范围内具有足够的线性度,具有高灵敏度。 可以通过控制隔膜的厚度来调节传感器的灵敏度。 提出了同轴和横向轴向配置的均匀器件到器件光学压力传感器的批量生产方法。