会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Optimization of ray tracing and beam propagation parameters
    • 光线跟踪和光束传播参数的优化
    • US08289527B2
    • 2012-10-16
    • US12752637
    • 2010-04-01
    • Shifang LiManuel Madriaga
    • Shifang LiManuel Madriaga
    • G01B11/24G01J4/00
    • G03F7/70625G01B11/24G01B2210/56G03F7/705
    • Provided is a method for determining profile parameters of a sample structure on a workpiece using an optical metrology system optimized to achieve one or more accuracy targets, the optical metrology system including an optical metrology tool, an optical metrology tool model, a profile model of the sample structure, and a parameter extraction algorithm, the method comprising: setting one or more accuracy targets for profile parameter determination for the sample structure; selecting a number of rays and beam propagation parameters to be used to model the optical metrology tool, measuring a diffraction signal off the sample structure using the optical metrology tool, generating a metrology output signal, determining an adjusted metrology output signal using the metrology output signal and calibration data, concurrently optimizing the optical metrology tool model and the profile model using the adjusted metrology output signal and the parameter extraction algorithm.
    • 提供了一种用于使用优化以实现一个或多个精度目标的光学测量系统来确定工件上的样品结构的轮廓参数的方法,所述光学测量系统包括光学测量工具,光学计量学工具模型, 样本结构和参数提取算法,该方法包括:为样本结构的轮廓参数确定设置一个或多个精度目标; 选择用于对光学测量工具进行建模的光束和光束传播参数的数量,使用光学测量工具测量样品结构的衍射信号,产生测量输出信号,使用测量输出信号确定调节的测量输出信号 和校准数据,同时使用调整的计量输出信号和参数提取算法优化光学测量工具模型和轮廓模型。
    • 2. 发明申请
    • OPTIMIZATION OF RAY TRACING AND BEAM PROPAGATION PARAMETERS
    • RAY跟踪和光束传播参数的优化
    • US20110246142A1
    • 2011-10-06
    • US12752637
    • 2010-04-01
    • SHIFANG LIMANUEL MADRIAGA
    • SHIFANG LIMANUEL MADRIAGA
    • G06G7/48G06F15/18G06F17/10
    • G03F7/70625G01B11/24G01B2210/56G03F7/705
    • Provided is a method for determining profile parameters of a sample structure on a workpiece using an optical metrology system optimized to achieve one or more accuracy targets, the optical metrology system including an optical metrology tool, an optical metrology tool model, a profile model of the sample structure, and a parameter extraction algorithm, the method comprising: setting one or more accuracy targets for profile parameter determination for the sample structure; selecting a number of rays and beam propagation parameters to be used to model the optical metrology tool, measuring a diffraction signal off the sample structure using the optical metrology tool, generating a metrology output signal, determining an adjusted metrology output signal using the metrology output signal and calibration data, concurrently optimizing the optical metrology tool model and the profile model using the adjusted metrology output signal and the parameter extraction algorithm.
    • 提供了一种用于使用优化以实现一个或多个精度目标的光学测量系统来确定工件上的样品结构的轮廓参数的方法,所述光学测量系统包括光学测量工具,光学计量学工具模型, 样本结构和参数提取算法,该方法包括:为样本结构的轮廓参数确定设置一个或多个精度目标; 选择用于对光学测量工具进行建模的光束和光束传播参数的数量,使用光学测量工具测量样品结构的衍射信号,产生测量输出信号,使用测量输出信号确定调节的测量输出信号 和校准数据,同时使用调整的计量输出信号和参数提取算法优化光学测量工具模型和轮廓模型。
    • 3. 发明授权
    • Managing and using metrology data for process and equipment control
    • 管理和使用测量数据进行过程和设备控制
    • US07526354B2
    • 2009-04-28
    • US11484484
    • 2006-07-10
    • Manuel MadriagaJunwei BaoVi Vuong
    • Manuel MadriagaJunwei BaoVi Vuong
    • G06F19/00
    • G01B11/14G01N21/4788G01N21/95607G01N2021/95615G03F7/70625
    • A system for examining a patterned structure formed on a semiconductor wafer using an optical metrology model includes a first fabrication cluster, a metrology cluster, an optical metrology model optimizer, and a real time profile estimator. The first fabrication cluster configured to process a wafer, the wafer having a first patterned and a first unpatterned structure. The first patterned structure has underlying film thicknesses, critical dimension, and profile. The metrology cluster including one or more optical metrology devices coupled to the first fabrication cluster. The metrology cluster is configured to measure diffraction signals off the first patterned and the first unpatterned structure. The metrology model optimizer is configured to optimize an optical metrology model of the first patterned structure using one or more measured diffraction signals off the first patterned structure and with floating profile parameters, material refraction parameters, and metrology device parameters.
    • 使用光学测量模型检查在半导体晶片上形成的图案化结构的系统包括第一制造集群,度量集群,光学计量模型优化器和实时分布估计器。 第一制造集群被配置为处理晶片,晶片具有第一图案化和第一未图案化结构。 第一图案结构具有底层膜厚度,临界尺寸和轮廓。 测量集群包括耦合到第一制造集群的一个或多个光学测量装置。 测量簇被配置为测量离开第一图案和第一未图案化结构的衍射信号。 计量模型优化器被配置为使用离开第一图案化结构的一个或多个测量的衍射信号以及浮动轮廓参数,材料折射参数和度量设备参数来优化第一图案化结构的光学测量模型。
    • 4. 发明申请
    • AUTOMATED PROCESS CONTROL OF A FABRICATION TOOL USING A DISPERSION FUNCTION RELATING PROCESS PARAMETER TO DISPERSION
    • 使用分散功能的制造工具的自动化过程控制相关过程参数分散
    • US20090082993A1
    • 2009-03-26
    • US11859669
    • 2007-09-21
    • SHIFANG LIHANYOU CHUMANUEL MADRIAGA
    • SHIFANG LIHANYOU CHUMANUEL MADRIAGA
    • G01B15/00
    • G01B11/0625H01L22/12
    • An optical metrology model for the structure is obtained. The optical metrology model comprising one or more profile parameters, one or more process parameters, and a dispersion. A dispersion function that relates the dispersion to at least one of the one or more process parameters is obtained. A simulated diffraction signal is generated using the optical metrology model and a value for the at least one of the process parameters and a value for the dispersion. The value for the dispersion is calculated using the value for the at least one of the process parameter and the dispersion function. A measured diffraction signal of the structure is obtained using an optical metrology tool. The measured diffraction signal is compared to the simulated diffraction signal to determine one or more profile parameters of the structure. The fabrication tool is controlled based on the determined one or more profile parameters of the structure.
    • 获得了该结构的光学计量学模型。 光学测量模型包括一个或多个轮廓参数,一个或多个过程参数和分散体。 获得将色散与一个或多个工艺参数中的至少一个相关联的色散函数。 使用光学测量模型生成模拟衍射信号,并且生成用于至少一个工艺参数的值和分散值。 使用过程参数和色散函数中的至少一个的值来计算色散的值。 使用光学测量工具获得该结构的测量的衍射信号。 将测量的衍射信号与模拟的衍射信号进行比较,以确定结构的一个或多个轮廓参数。 基于确定的结构的一个或多个轮廓参数来控制制造工具。
    • 5. 发明申请
    • AUTOMATED PROCESS CONTROL USING PARAMETERS DETERMINED WITH APPROXIMATION AND FINE DIFFRACTION MODELS
    • 自动化过程控制使用参数确定与近似和微分散模型
    • US20090063077A1
    • 2009-03-05
    • US11848214
    • 2007-08-30
    • WEI LIUSHIFANG LIWEIDUNG YANGMANUEL MADRIAGA
    • WEI LIUSHIFANG LIWEIDUNG YANGMANUEL MADRIAGA
    • G06F19/00
    • G05B19/41875G01N21/4788G03F7/70625G05B2219/32182G05B2219/32186G05B2219/32188G05B2219/37224
    • Provided is a method of controlling a fabrication cluster using a machine learning system, the machine learning system trained developed using an optical metrology model, the optical metrology model comprising a profile model, an approximation diffraction model, and a fine diffraction model. A simulated approximation diffraction signal is generated based on an approximation diffraction model of the structure. A set of difference diffraction signal is obtained by subtracting the simulated approximation diffraction signal from each of simulated fine diffraction signals and paired with the corresponding profile parameters. A first machine learning system is trained using the pairs of difference diffraction signal and corresponding profile parameters. A library of simulated fine diffraction signals and profile parameters is generated using the trained first machine learning system and using ranges and corresponding resolutions of the profile parameters. The library is used to train a second machine learning system. A measured diffraction signal is input into the trained second machine learning system to determine at least one profile parameter. The at least one profile parameter is used to adjust at least one process parameter or equipment setting of the fabrication cluster.
    • 提供了一种使用机器学习系统来控制制造集群的方法,使用光学测量模型训练的机器学习系统,包括轮廓模型,近似衍射模型和精细衍射模型的光学测量模型。 基于结构的近似衍射模型生成模拟近似衍射信号。 通过从每个模拟的细衍射信号中减去模拟近似衍射信号并与相应的轮廓参数配对来获得差分衍射信号。 使用差分衍射信号和相应的轮廓参数对来训练第一机器学习系统。 使用训练有素的第一机器学习系统并使用轮廓参数的范围和相应的分辨率来生成模拟的细衍射信号和轮廓参数的库。 该图书馆用于训练第二台机器学习系统。 测量的衍射信号被输入到训练有素的第二机器学习系统中以确定至少一个轮廓参数。 至少一个轮廓参数用于调整至少一个制造集群的过程参数或设备设置。
    • 6. 发明授权
    • Optimized characterization of wafers structures for optical metrology
    • 光学测量的晶圆结构的优化表征
    • US07444196B2
    • 2008-10-28
    • US11408744
    • 2006-04-21
    • Steven ScheerAlan NoletManuel Madriaga
    • Steven ScheerAlan NoletManuel Madriaga
    • G06F19/00G01B11/14G01R31/26H01L21/66
    • G01N21/4788G03F7/70625
    • A patterned structure in a wafer is created using one or more fabrication treatment processes. The patterned structure has a treated and an untreated portion. One or more diffraction sensitivity enhancement techniques are applied to the structure, the one or more diffraction sensitivity enhancement techniques adjusting one or more properties of the patterned structure to enhance diffraction contrast between the treated portion and untreated portions. A first diffraction signal is measured off an unpatterned structure on the wafer using an optical metrology device. A second diffraction signal is measured off the patterned structure on the wafer using the optical metrology device. One or more diffraction sensitivity enhancement techniques are selected based on comparisons of the first and second diffraction signals.
    • 使用一个或多个制造处理工艺制造晶片中的图案化结构。 图案化结构具有经处理和未处理的部分。 将一种或多种衍射灵敏度增强技术应用于该结构,一种或多种衍射灵敏度增强技术调节图案化结构的一个或多个性质以增强经处理部分和未处理部分之间的衍射对比度。 使用光学测量装置从晶片上的未图案化结构测量第一衍射信号。 使用光学测量装置从晶片上的图案化结构测量第二衍射信号。 基于第一和第二衍射信号的比较来选择一种或多种衍射灵敏度增强技术。
    • 9. 发明授权
    • Automated process control of a fabrication tool using a dispersion function relating process parameter to dispersion
    • 使用将过程参数与色散相关联的色散函数对制造工具进行自动化过程控制
    • US07636649B2
    • 2009-12-22
    • US11859669
    • 2007-09-21
    • Shifang LiHanyou ChuManuel Madriaga
    • Shifang LiHanyou ChuManuel Madriaga
    • G05B17/00G06F19/00G06F17/40
    • G01B11/0625H01L22/12
    • An optical metrology model for the structure is obtained. The optical metrology model comprising one or more profile parameters, one or more process parameters, and a dispersion. A dispersion function that relates the dispersion to at least one of the one or more process parameters is obtained. A simulated diffraction signal is generated using the optical metrology model and a value for the at least one of the process parameters and a value for the dispersion. The value for the dispersion is calculated using the value for the at least one of the process parameter and the dispersion function. A measured diffraction signal of the structure is obtained using an optical metrology tool. The measured diffraction signal is compared to the simulated diffraction signal to determine one or more profile parameters of the structure. The fabrication tool is controlled based on the determined one or more profile parameters of the structure.
    • 获得了该结构的光学计量学模型。 光学测量模型包括一个或多个轮廓参数,一个或多个过程参数和分散体。 获得将色散与一个或多个工艺参数中的至少一个相关联的色散函数。 使用光学测量模型生成模拟衍射信号,并且生成至少一个工艺参数的值和色散值。 使用过程参数和色散函数中的至少一个的值来计算色散的值。 使用光学测量工具获得该结构的测量的衍射信号。 将测量的衍射信号与模拟的衍射信号进行比较,以确定结构的一个或多个轮廓参数。 基于确定的结构的一个或多个轮廓参数来控制制造工具。
    • 10. 发明授权
    • Automated process control using parameters determined with approximation and fine diffraction models
    • 使用近似和精细衍射模型确定的参数进行自动过程控制
    • US07627392B2
    • 2009-12-01
    • US11848214
    • 2007-08-30
    • Wei LiuShifang LiWeidung YangManuel Madriaga
    • Wei LiuShifang LiWeidung YangManuel Madriaga
    • G06F19/00
    • G05B19/41875G01N21/4788G03F7/70625G05B2219/32182G05B2219/32186G05B2219/32188G05B2219/37224
    • Provided is a method of controlling a fabrication cluster using a machine learning system, the machine learning system trained developed using an optical metrology model. A simulated approximation diffraction signal is generated based on an approximation diffraction model of the structure. A set of difference diffraction signal is obtained by subtracting the simulated approximation diffraction signal from each of simulated fine diffraction signals and paired with the corresponding profile parameters. A first machine learning system is trained using the pairs of difference diffraction signal and corresponding profile parameters. A library of simulated fine diffraction signals and profile parameters is generated using the trained first machine learning system and using ranges and corresponding resolutions of the profile parameters. A measured diffraction signal is input into the trained second machine learning system to determine at least one profile parameter. The at least one profile parameter is used to adjust at least one process parameter or equipment setting of the fabrication cluster.
    • 提供了一种使用机器学习系统来控制制造集群的方法,使用光学计量学模型训练的机器学习系统。 基于结构的近似衍射模型生成模拟近似衍射信号。 通过从每个模拟的细衍射信号中减去模拟近似衍射信号并与相应的轮廓参数配对来获得差分衍射信号。 使用差分衍射信号和相应的轮廓参数对来训练第一机器学习系统。 使用训练有素的第一机器学习系统并使用轮廓参数的范围和相应的分辨率来生成模拟的细衍射信号和轮廓参数的库。 测量的衍射信号被输入到训练有素的第二机器学习系统中以确定至少一个轮廓参数。 至少一个轮廓参数用于调整至少一个制造集群的过程参数或设备设置。