会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Oscillator having two cascaded gain stages with feedback operating near
their unity gain frequency
    • 振荡器具有两个级联增益级,反馈工作在其单位增益频率附近
    • US5712599A
    • 1998-01-27
    • US665954
    • 1996-06-19
    • Leonard L. Kleinberg
    • Leonard L. Kleinberg
    • H03B1/00H03B5/24H03B5/12
    • H03B5/24H03B2201/0275
    • An oscillating signal generator for generating an oscillating signal having a variable oscillation frequency that can be near the unity gain frequency of the gain devices within the oscillating signal generator (Generation of High-Frequency Oscillating Signal Techniques, "GHOST"). Two gain stages, each with a respective effective resistance R.sub.eff, an emitter load capacitance C.sub.E, and a respective gain device having a unity gain frequency .omega..sub.T, are cascaded and configured to provide a respective gain with a phase at substantially 180.degree.. In that case, the oscillation frequency, of the oscillating signal generated by the oscillating signal generator of the present invention, .omega.=�.omega..sub.T /(R.sub.eff C.sub.E)!.sup.1/2. A feedback with a feedback gain is provided between the output to the input of the cascade of the two gain stages. The feedback gain is designed such that a product of the feedback gain and the gain through the cascade of the two gain stages is substantially one. The oscillation frequency of the oscillating signal generated by the oscillator can be varied by a corresponding variation to .omega..sub.T and/or R.sub.eff. Alternatively, the oscillation frequency can be substantially fixed at a predetermined resonance frequency determined by a frequency determining network operatively connected to the cascade of the two gain stages. The oscillating signal generator of the present invention which can generate sine waves can be implemented with circuit elements that are easily fabricated on-chip within a monolithic integrated circuit. In addition, because oscillation frequencies near the unity gain frequency of the gain devices can be achieved, higher frequencies for a given power dissipation or lower power dissipation for a given frequency can be obtained.
    • 振荡信号发生器,用于产生具有可接近于振荡信号发生器内的增益器件的单位增益频率的可变振荡频率的振荡信号(产生高频振荡信号技术,“GHOST”)。 具有相应有效电阻Reff,发射极负载电容CE和具有单位增益频率ωT的相应增益器件的两个增益级被级联和配置以提供具有大致180度的相位的相应增益。 在这种情况下,由本发明的振荡信号发生器产生的振荡信号的振荡频率为ω= [ω/(ReffCE)] + E,fra 1/2 + EE。 具有反馈增益的反馈在两个增益级的级联输入之间提供。 反馈增益被设计成使得通过两个增益级的级联的反馈增益和增益的乘积基本上是一个。 由振荡器产生的振荡信号的振荡频率可以通过与ωT和/或Reff的相应变化来改变。 或者,振荡频率可以基本上固定在由可操作地连接到两个增益级的级联的频率确定网络确定的预定谐振频率上。 可产生正弦波的本发明的振荡信号发生器可以利用在单片集成电路内易于制造在片上的电路元件来实现。 此外,由于可以实现增益器件的单位增益频率附近的振荡频率,因此可以获得给定功率的较高频率或给定频率的较低功耗。
    • 3. 发明授权
    • High input impedance amplifier
    • 高输入阻抗放大器
    • US5399993A
    • 1995-03-21
    • US113373
    • 1993-08-26
    • Leonard L. Kleinberg
    • Leonard L. Kleinberg
    • G11C19/28H03F3/347H03H3/00
    • H03F3/347G11C19/285
    • High input impedance amplifiers are provided which reduce the input impedance solely to a capacitive reactance, or, in a somewhat more complex design, provides an extremely high essentially infinite, capacitive reactance. In one embodiment, where the input impedance is reduced in essence, to solely a capacitive reactance, an operational amplifier in a follower configuration is driven at its non-inverting input and a resistor with a predetermined magnitude is connected between the inverting and non-inverting inputs. A second embodiment eliminates the capacitance from the input by adding a second stage to the first embodiment. The second stage is a second operational amplifier in a non-inverting gain-stage configuration where the output of the first follower stage drives the non-inverting input of the second stage and the output of the second stage is fed back to the non-inverting input of the first stage through a capacitor of a predetermined magnitude. These amplifiers, while generally useful, are very useful as sensor buffer amplifiers that may eliminate significant sources of error.
    • 提供了高输入阻抗放大器,其将输入阻抗仅仅降低到电容性电抗,或者在稍微更复杂的设计中,提供极高的本质上无限的容抗。 在一个实施例中,输入阻抗本质上降低到单独的容抗,其随动配置中的运算放大器在其非反相输入端被驱动,并且具有预定幅度的电阻器连接在反相和非反相 输入。 第二实施例通过向第一实施例添加第二级来消除来自输入的电容。 第二级是非反相增益级配置中的第二运算放大器,其中第一跟随器级的输出驱动第二级的非反相输入,并且第二级的输出被反馈到非反相 通过预定大小的电容器输入第一级。 这些放大器通常是有用的,作为传感器缓冲放大器非常有用,可以消除重要的误差源。
    • 5. 发明授权
    • Wideband gain stable amplifier
    • 宽带增益稳定放大器
    • US5576663A
    • 1996-11-19
    • US412776
    • 1995-03-24
    • Leonard L. Kleinberg
    • Leonard L. Kleinberg
    • H03F1/08H03F3/189
    • H03F1/083
    • A method and apparatus for increasing the bandwidth of an operational amplifier and including a capacitor being connected across the inverting and non-inverting inputs of the operational amplifier and further including a feedback circuit connected from the output to one of the inputs, the inverting input, and wherein the value of the capacitance is selected such that the time constant of an RC network including the capacitance and the feedback circuit impedance is proportional to the inverse of the product of the closed loop gain and a factor .beta. which equates the absolute value of the gain at two different frequencies.
    • 一种用于增加运算放大器的带宽并包括在运算放大器的反相和非反相输入端连接的电容器的方法和装置,还包括从输出端连接到输入之一的反相输入端, 并且其中选择电容的值,使得包括电容和反馈电路阻抗的RC网络的时间常数与闭环增益和因子β的乘积的倒数成比例,其等于 增益在两个不同的频率。
    • 6. 发明授权
    • Temperature sensitive oscillator
    • 温度敏感振荡器
    • US4603306A
    • 1986-07-29
    • US727035
    • 1985-04-25
    • Leonard L. Kleinberg
    • Leonard L. Kleinberg
    • G01K7/32G01K7/00
    • G01K7/32
    • An oscillator circuit for sensing and indicating temperature by changing oscillator frequency with temperature comprises a programmable operational amplifier which is operated on the roll-off portion of its gain versus frequency curve and has its output directly connected to the inverting input to place the amplifier in a follower configuration. Its output is also connected to the non-inverting input by a capacitor with a crystal or other tuned circuit also being connected to the non-inverting input. A resistor is connected to the program input of the amplifier to produce a given set current at a given temperature, the set current varying with temperature. As the set current changes, the gain-bandwidth of the amplifier changes and, in turn, the reflected capacitance across the crystal changes, thereby providing the desired change in oscillator frequency by pulling the crystal. There is no requirement that a crystal employed with this circuit display either a linear frequency change with temperature or a substantial frequency change with temperature.
    • 用于通过温度改变振荡器频率来感测和指示温度的振荡器电路包括可编程运算放大器,其在其增益对频率曲线的滚降部分上运行,并且其输出直接连接到反相输入端以将放大器放置在 跟随器配置。 其输出也通过电容器连接到非反相输入,晶体或其他调谐电路也连接到非反相输入。 电阻器连接到放大器的程序输入端,以在给定温度下产生给定的设定电流,设定电流随温度变化。 随着设定电流的变化,放大器的增益带宽发生变化,反过来,晶体两端的反射电容发生变化,从而通过拉晶来提供振荡器频率的期望变化。 不要求使用该电路的晶体显示随温度的线性频率变化或随着温度的显着频率变化。
    • 7. 发明授权
    • Temperature responsive transmitter
    • 温度响应变送器
    • US4689621A
    • 1987-08-25
    • US846426
    • 1986-03-31
    • Leonard L. Kleinberg
    • Leonard L. Kleinberg
    • A61B5/00G01K7/32H03C3/10
    • A61B5/0008G01K7/32
    • A temperature responsive transmitter is provided in which frequency varies linearly with temperature. The transmitter includes two identically biased transistors connected in parallel. A capacitor, which reflects into the common bases to generate negative resistance effectively in parallel with the capacitor, is connected to the common emitters. A crystal is effectively in parallel with the capacitor and the negative resistance. Oscillations occur if the magnitude of the absolute value of the negative resistance is less than the positive resistive impedance of the capacitor and the inductance of the crystal. The crystal has a large linear temperature coefficient and a resonant frequency which is substantially less than the gain-bandwidth product of the transistors to ensure that the crystal primarily determines the frequency of oscillation. A high-Q tank circuit having an inductor and a capacitor is connected to the common collectors to increase the collector current flow which in turn enhances the radiation of the oscillator frequency by the inductor.
    • 提供一种温度响应型发射机,其中频率随温度线性变化。 发射机包括并联连接的两个相同偏置的晶体管。 反射到公共基极以与电容器并联产生负电阻的电容器连接到公共发射器。 晶体与电容器和负电阻有效并联。 如果负电阻的绝对值的大小小于电容器的正电阻阻抗和晶体的电感,就会发生振荡。 晶体具有大的线性温度系数和谐振频率,其明显小于晶体管的增益带宽乘积,以确保晶体主要决定振荡的频率。 具有电感器和电容器的高Q槽电路连接到共用集电极以增加集电极电流,这又增加了电感器对振荡器频率的辐射。
    • 8. 发明授权
    • JFET Reflection oscillator
    • JFET反射振荡器
    • US4553110A
    • 1985-11-12
    • US153240
    • 1980-05-27
    • Leonard L. Kleinberg
    • Leonard L. Kleinberg
    • H03B5/36H03B5/12
    • H03B5/362H03B5/364H03B2200/001H03B2200/0012
    • A high frequency oscillator circuit is provided using a low cost junction type field effect transistor (T.sub.1) with a tuned circuit connected to its gate. The frequency of operation is determined by the tuned circuit and the capacitance reflected from the source to the gate. The transistor is matched to the frequency of operation so that this frequency falls within the roll-off portion of the transistor's transconductance verses frequency curve, preferably somewhat above the 3 db point in frequency. Phase shifting necessary to sustain oscillation occurs due to the operation of the transistor in the roll-off portion of the curve and the addition of a phase shifting network (R.sub.1, C.sub.1) at the source. The resulting oscillator is small, stable, linear and inexpensive.
    • 使用具有连接到其门的调谐电路的低成本结型场效应晶体管(T1)提供高频振荡器电路。 操作频率由调谐电路和从源极到门反射的电容决定。 晶体管与工作频率匹配,使得该频率落入晶体管的跨导与频率曲线的滚降部分之间,优选地稍微高于3db频率点。 由于曲线的滚降部分中的晶体管的操作和在源极处添加相移网络(R1,C1),所以需要进行维持振荡所需的相移。 所产生的振荡器小,稳定,线性和便宜。
    • 9. 发明授权
    • Low noise tuned amplifier
    • 低噪声调谐放大器
    • US4437069A
    • 1984-03-13
    • US272839
    • 1981-06-12
    • Leonard L. Kleinberg
    • Leonard L. Kleinberg
    • H03F1/48H03F3/185H03F1/34
    • H03F1/483H03F3/1855H03F2200/261H03F2200/372
    • A bandpass amplifier employing a field effect transistor amplifier first stage (10) with a resistive load (R.sub.2) either a.c. or directly coupled to the non-inverting input of an operational amplifier second stage (20) which is loaded in a Wien Bridge configuration. The bandpass amplifier may be operated with a signal injected into the gate terminal (G) of the field effect transistor and the signal output taken from the output terminal of the operational amplifier. The operational amplifier stage appears as an inductive reactance, capacitive reactance and negative resistance at the non-inverting input of the operational amplifier, all of which appear in parallel with the resistive load (R.sub.2) of the field effect transistor.
    • 采用具有电阻负载(R2)的场效应晶体管放大器第一级(10)的带通放大器。 或直接耦合到以Wien Bridge配置加载的运算放大器第二级(20)的非反相输入。 带通放大器可以用注入到场效应晶体管的栅极端(G)的信号和从运算放大器的输出端获取的信号输出来操作。 运算放大器级在运算放大器的非反相输入端呈现为感抗,电容电抗和负电阻,所有这些都与场效应晶体管的电阻负载(R2)并联。
    • 10. 发明授权
    • Method and apparatus for generating non-linear variable impedance
    • 用于产生非线性可变阻抗的方法和装置
    • US5784692A
    • 1998-07-21
    • US665834
    • 1996-06-19
    • Leonard L. Kleinberg
    • Leonard L. Kleinberg
    • H03D7/12H03H11/46H04B1/28
    • H03D7/12H03H11/46
    • An impedance-generating device that provides a resistance and a reactance that are non-linear functions of a signal over a wide impedance range (VariablE Non-Linear Impedance Circuit Electronics, "VENICE"). An electronic component that has a gain characteristic with a unity gain frequency that is directly proportional to that signal can be configured to generate such an impedance. Such an electronic component configured to provide a negative effective resistance and a variable non-linear reactance can be used to implement a high frequency harmonic generator. This generator can provide high order harmonics which can be used in high frequency communications systems. The electronic component can also be configured to provide only a voltage-variable non-linear reactance which can be used to implement a reactive mixer to frequency shift a high frequency signal to an intermediate frequency signal, from mixing the high frequency signal with a local oscillator signal. This mixer provides a gain, at the intermediate frequency, that is the unity gain frequency of the electronic component divided by the intermediate frequency. Two stages of such mixers can be used in a homodyne circuit to generate the intermediate frequency signal without the use of off-chip bandpass filters. Also, an amplification to the intermediate frequency signal generated by the mixing can be used to implement a RF amplifier from the further modulation of this intermediate frequency signal on the local oscillator signal. These impedance-generating devices can thus implement high performance electronic circuits for communications applications.
    • 一种阻抗产生装置,其提供在宽阻抗范围(+ E,uns V + EE ariabl + E,uns E + EE + E,uns N + EE on)上的信号的非线性函数的电阻和电抗 -Linear + E,uns I + EE阻抗+ E,uns C + EE电路+ E,uns E + EE lectronics,“VENICE”)。 具有与该信号成正比的单位增益频率的增益特性的电子部件可被配置为产生这种阻抗。 可以使用这样的配置成提供负的有效电阻和可变的非线性电抗的电子部件来实现高频谐波发生器。 该发生器可以提供可用于高频通信系统中的高次谐波。 电子部件还可以被配置为仅提供可用于实现无功混频器以将高频信号频移到中频信号的电压可变非线性电抗,从而将高频信号与本地振荡器 信号。 该混频器在中频提供增益,即电子部件的单位增益频率除以中频。 这种混频器的两个阶段可以用于零差电路中以产生中频信号而不使用片外带通滤波器。 此外,通过混频产生的中频信号的放大可以用于通过本地振荡器信号上的该中频信号的进一步调制实现RF放大器。 因此,这些阻抗产生装置可以实现用于通信应用的高性能电子电路。