会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Mining user behavior data for IP address space intelligence
    • 挖掘IP地址空间智能的用户行为数据
    • US08789171B2
    • 2014-07-22
    • US12055321
    • 2008-03-26
    • Ivan OsipkovGeoffrey HultenJohn MehrYinglian XieFang Yu
    • Ivan OsipkovGeoffrey HultenJohn MehrYinglian XieFang Yu
    • H04L29/06
    • H04L67/22H04L61/2061H04L63/1408H04L2463/144
    • The claimed subject matter is directed to mining user behavior data for increasing Internet Protocol (“IP”) space intelligence. Specifically, the claimed subject matter provides a method and system of mining user behavior within an IP address space and the application of the IP address space intelligence derived from the mined user behavior.In one embodiment, the IP address space intelligence is formed and/or increased with information obtained from the mined user behavior data. A system of uniquely-identified users is monitored and their behavior within the IP address space is recorded. Further data is mined from estimated characteristics about the user, including the nature of the IP address the user uses to log into the service, and characterizing the IP address according to a network type.
    • 所要求保护的主题涉及用于增加因特网协议(“IP”)空间智能的采矿用户行为数据。 具体地,所要求保护的主题提供了在IP地址空间内挖掘用户行为的方法和系统,以及从开采的用户行为导出的IP地址空间智能的应用。 在一个实施例中,使用从开采的用户行为数据获得的信息来形成和/或增加IP地址空间智能。 监视唯一标识的用户的系统,并记录其在IP地址空间内的行为。 进一步的数据从关于用户的估计特征开始,包括用户用于登录服务的IP地址的性质,以及根据网络类型表征IP地址。
    • 4. 发明申请
    • Trees of classifiers for detecting email spam
    • 用于检测电子邮件垃圾邮件的分类树
    • US20070038705A1
    • 2007-02-15
    • US11193691
    • 2005-07-29
    • David ChickeringGeoffrey HultenRobert RounthwaiteChristopher MeekDavid HeckermanJoshua Goodman
    • David ChickeringGeoffrey HultenRobert RounthwaiteChristopher MeekDavid HeckermanJoshua Goodman
    • G06F15/16
    • H04L51/12
    • Decision trees populated with classifier models are leveraged to provide enhanced spam detection utilizing separate email classifiers for each feature of an email. This provides a higher probability of spam detection through tailoring of each classifier model to facilitate in more accurately determining spam on a feature-by-feature basis. Classifiers can be constructed based on linear models such as, for example, logistic-regression models and/or support vector machines (SVM) and the like. The classifiers can also be constructed based on decision trees. “Compound features” based on internal and/or external nodes of a decision tree can be utilized to provide linear classifier models as well. Smoothing of the spam detection results can be achieved by utilizing classifier models from other nodes within the decision tree if training data is sparse. This forms a base model for branches of a decision tree that may not have received substantial training data.
    • 利用分类器模型填充的决策树利用电子邮件的每个功能使用单独的电子邮件分类器来提供增强的垃圾邮件检测。 这通过定制每个分类器模型提供了更高的垃圾邮件检测的概率,以便于在逐个特征的基础上更准确地确定垃圾邮件。 分类器可以基于诸如逻辑回归模型和/或支持向量机(SVM)等线性模型来构建。 分类器也可以基于决策树构建。 基于决策树的内部和/或外部节点的“复合特征”也可以用于提供线性分类器模型。 垃圾邮件检测结果的平滑可以通过使用来自决策树内的其他节点的分类器模型来实现,如果训练数据是稀疏的。 这形成了可能没有接收到大量训练数据的决策树的分支的基本模型。
    • 5. 发明申请
    • Incremental anti-spam lookup and update service
    • 增量的反垃圾邮件查询和更新服务
    • US20060015561A1
    • 2006-01-19
    • US10879626
    • 2004-06-29
    • Elissa MurphyJoshua GoodmanDerek HazeurRobert RounthwaiteGeoffrey Hulten
    • Elissa MurphyJoshua GoodmanDerek HazeurRobert RounthwaiteGeoffrey Hulten
    • G06F15/16
    • G06Q10/107H04L51/12
    • The present invention provides a unique system and method that facilitates incrementally updating spam filters in near real time or real time. Incremental updates can be generated in part by difference learning. Difference learning involves training a new spam filter based on new data and then looking for the differences between the new spam filter and the existing spam filter. Differences can be determined at least in part by comparing the absolute values of parameter changes (weight changes of a feature between the two filters). Other factors such as frequency of parameters can be employed as well. In addition, available updates with respect to particular features or messages can be looked up using one or more lookup tables or databases. When incremental and/or feature-specific updates are available, they can be downloaded such as by a client for example. Incremental updates can be automatically provided or can be provided by request according to client or server preferences.
    • 本发明提供了一种独特的系统和方法,其便于实时或实时地逐渐更新垃圾邮件过滤器。 增量更新可以通过差异学习部分产生。 差异学习涉及到根据新数据来培训新的垃圾邮件过滤器,然后寻找新的垃圾邮件过滤器和现有的垃圾邮件过滤器之间的差异。 差异可以至少部分地通过比较参数变化的绝对值(两个滤波器之间的特征的权重变化)来确定。 也可以使用诸如参数频率的其他因素。 此外,可以使用一个或多个查找表或数据库查找关于特定特征或消息的可用更新。 当增量和/或功能特定的更新可用时,可以例如通过客户端下载它们。 增量更新可以自动提供,也可以根据客户端或服务器的偏好请求提供。
    • 6. 发明申请
    • MINING USER BEHAVIOR DATA FOR IP ADDRESS SPACE INTELLIGENCE
    • 挖掘用户行为数据进行IP地址空间智能
    • US20090249480A1
    • 2009-10-01
    • US12055321
    • 2008-03-26
    • Ivan OsipkovGeoffrey HultenJohn MehrYinglian XieFang Yu
    • Ivan OsipkovGeoffrey HultenJohn MehrYinglian XieFang Yu
    • G06F11/00
    • H04L67/22H04L61/2061H04L63/1408H04L2463/144
    • The claimed subject matter is directed to mining user behavior data for increasing Internet Protocol (“IP”) space intelligence. Specifically, the claimed subject matter provides a method and system of mining user behavior within an IP address space and the application of the IP address space intelligence derived from the mined user behavior.In one embodiment, the IP address space intelligence is formed and/or increased with information obtained from the mined user behavior data. A system of uniquely-identified users is monitored and their behavior within the IP address space is recorded. Further data is mined from estimated characteristics about the user, including the nature of the IP address the user uses to log into the service, and characterizing the IP address according to a network type.
    • 所要求保护的主题涉及用于增加因特网协议(“IP”)空间智能的采矿用户行为数据。 具体地,所要求保护的主题提供了在IP地址空间内挖掘用户行为的方法和系统,以及从开采的用户行为导出的IP地址空间智能的应用。 在一个实施例中,使用从开采的用户行为数据获得的信息来形成和/或增加IP地址空间智能。 监视唯一标识的用户的系统,并记录其在IP地址空间内的行为。 进一步的数据从关于用户的估计特征开始,包括用户用于登录服务的IP地址的性质,以及根据网络类型表征IP地址。