会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • FRAME SYNCHRONIZATION METHOD FOR QKD SYSTEMS
    • QKD系统的帧同步方法
    • WO2008021131A3
    • 2008-08-28
    • PCT/US2007017631
    • 2007-08-08
    • MAGIQ TECHNOLOGIES INCBERZANSKIS AUDRIUSKWOK BRANDONVIG HARRYYOUNG JONATHAN
    • BERZANSKIS AUDRIUSKWOK BRANDONVIG HARRYYOUNG JONATHAN
    • H04L9/00
    • H04L9/0852H04L9/12
    • Systems and methods for exchanging and processing encoded quantum signals in quantum key distribution (QKD) systems in real time are disclosed. A stream of quantum signals (QS) is sent from Alice to Bob. Alice only encodes sets or "frames" (F) of the streamed quantum signals based on receiving a "ready" message from Bob. This allows for Bob to finish processing the previous frame of data by allowing different bit buffers (44A,B; 50A,B; 60A,B; 61A,B; 64A,B) to fill and then be used for data processing. This approach results in gaps (G) in between frames wherein quantum signals in the stream are sent unencoded and ignored by Bob. However, those quantum signals that are encoded for the given frame are efficiently processed, which on the whole is better than missing encoded quantum signals because Bob is not ready to receive and process them.
    • 公开了在量子密钥分配(QKD)系统中实时交换和处理编码量子信号的系统和方法。 量子信号流(QS)从爱丽丝发送到鲍勃。 基于接收到来自Bob的“准备”消息,爱丽丝只对流量子信号的集合或“帧”(F)进行编码。 这允许Bob通过允许不同的位缓冲器(44A,B; 50A,B; 60A,B; 61A,B; 64A,B)填充然后用于数据处理来完成对先前的数据帧的处理。 这种方法导致帧之间的间隙(G),其中流中的量子信号被未被编码并被Bob忽略。 然而,对于给定帧编码的那些量子信号被有效地处理,由于Bob没有准备好接收和处理这些量子信号,所以总体上比编码的量子信号更好。
    • 4. 发明申请
    • ENHANCED QUANTUM KEY FORMATION USING AN ACTIVELY COMPENSATED QKD SYSTEM
    • 使用激活补偿QKD系统的增强量子关键形成
    • WO2009038640A1
    • 2009-03-26
    • PCT/US2008/010227
    • 2008-08-28
    • MAGIQ TECHNOLOGIES, INC.BEAL, A., CraigLAGASSE, Michael, J.BERZANSKIS, Audrius
    • BEAL, A., CraigLAGASSE, Michael, J.BERZANSKIS, Audrius
    • H04L9/00
    • H04L9/0858
    • Systems and methods for enhanced quantum key distribution (QKD) using an actively compensated QKD system (10). The method includes exchanging quantum signals (QS) between first and second QKD stations (Alice and Bob) and measuring the quantum signal error (QBER). An error signal (S E ) representative of the system visibility error is then generated. An error-signal threshold (S TH ) that defines a system visibility error limit is then selected. Those qubits measured with the condition S E > S TH are called "above-threshold" qubits, while those qubits measured with the condition SE ≤ S TH are called "below-threshold" qubits. Only below-threshold qubits are stored and used to form the final quantum key. This is accomplished by sending a blanking signal (S B ) to the memory unit (130) where the qubits are stored. The blanking signal prevents above-threshold qubits from being stored therein. The raw quantum key so formed has few errors and thus forms a longer final quantum key for a given number of exchanged quantum signals.
    • 使用主动补偿QKD系统的增强量子密钥分配(QKD)的系统和方法(10)。 该方法包括在第一和第二QKD站(Alice和Bob)之间交换量子信号(QS)并测量量子信号误差(QBER)。 然后产生代表系统可见性错误的误差信号(SE)。 然后选择定义系统可见性错误限制的错误信号阈值(STH)。 以条件SE> STH测量的量子位称为“高于阈值”量子位,而用条件SE = STH测量的量子位称为“低于阈值”量子位。 只有低于阈值的量子位被存储并用于形成最终量子密钥。 这通过向存储量子位的存储单元(130)发送消隐信号(SB)来实现。 消隐信号防止高于阈值量子位的存储在其中。 如此形成的原始量子密钥具有很少的误差,因此对于给定数量的交换量子信号形成更长的最终量子密钥。
    • 6. 发明申请
    • FRAME SYNCHRONIZATION METHOD FOR QKD SYSTEMS
    • QKD系统的帧同步方法
    • WO2008021131A2
    • 2008-02-21
    • PCT/US2007/017631
    • 2007-08-08
    • MAGIQ TECHNOLOGIES, INC.BERZANSKIS, AudriusKWOK, BrandonVIG, HarryYOUNG, Jonathan
    • BERZANSKIS, AudriusKWOK, BrandonVIG, HarryYOUNG, Jonathan
    • H04L9/00
    • H04L9/0852H04L9/12
    • Systems and methods for exchanging and processing encoded quantum signals in quantum key distribution (QKD) systems in real time are disclosed. A stream of quantum signals (QS) is sent from Alice to Bob. Alice only encodes sets or "frames" (F) of the streamed quantum signals based on receiving a "ready" message from Bob. This allows for Bob to finish processing the previous frame of data by allowing different bit buffers (44A,B; 50A,B; 60A,B; 61A,B; 64A,B) to fill and then be used for data processing. This approach results in gaps (G) in between frames wherein quantum signals in the stream are sent unencoded and ignored by Bob. However, those quantum signals that are encoded for the given frame are efficiently processed, which on the whole is better than missing encoded quantum signals because Bob is not ready to receive and process them.
    • 公开了用于实时交换和处理量子密钥分发(QKD)系统中的编码的量子信号的系统和方法。 量子信号流(QS)从Alice发送给Bob。 Alice只编码组或“帧” (F)基于接收到“准备好”的量化信号 来自Bob的消息。 这允许Bob通过允许不同的位缓冲器(44A,B; 50A,B; 60A,B; 61A,B; 64A,B)填充然后用于数据处理来完成前一帧数据的处理。 该方法导致帧之间的间隙(G),其中流中的量子信号未被编码且被Bob忽略。 然而,对于给定帧编码的那些量子信号被有效地处理,总体上比丢失编码的量子信号要好,因为鲍勃没有准备好接收和处理它们。
    • 8. 发明申请
    • QKD CASCADED NETWORK WITH LOOP-BACK CAPABILITY
    • 具有环回能力的QKD级联网络
    • WO2006014298A3
    • 2006-06-15
    • PCT/US2005023135
    • 2005-06-30
    • MAGIQ TECHNOLOGIES INCVIG HARRYBERZANSKIS AUDRIUS
    • VIG HARRYBERZANSKIS AUDRIUS
    • H04L9/00H04B10/08
    • H04L9/0855H04B10/70
    • A QKD cascaded network (5) with loop-back capability is disclosed. The QKD system network includes a plurality of cascaded QKD relays (10, 20, 30) each having two QKD stations Alice (A) and Bob (B) therein. Each QKD relay also includes an optical switch (50). The optical switch is optically coupled to each QKD station in the relay, as well as to the input ports (PI) of the relay. In a first position, the optical switch allows for communication between adjacent relays. In a second position, the optical switch allows for pass-through communication between the QKD relays (10 and 30) that are adjacent the relay whose switch is in the first position. Also in the second position, the optical switch allows for communication between the QKD stations A and B within the relay. This, in turn, allows for diagnostic measurements to be made of one or both of the QKD stations via an optical path (90) that is entirely within the relay station enclosure (12, 22, 32).
    • 公开了一种具有环回能力的QKD级联网络(5)。 QKD系统网络包括多个级联的QKD中继器(10,20,30),每个QKD中继器中都具有两个QKD站Alice(A)和Bob(B)。 每个QKD继电器还包括一个光开关(50)。 光开关光耦合到继电器中的每个QKD站以及继电器的输入端口(PI)。 在第一位置,光开关允许相邻继电器之间的通信。 在第二个位置,光开关允许QKD继电器(10和30)之间的直通通信,QKD继电器与开关处于第一位置的继电器相邻。 同样在第二个位置,光开关允许继电器内的QKD站A和B之间的通信。 这又允许通过完全在中继站外壳(12,22,32)内的光路(90)对QKD站中的一个或两个进行诊断测量。
    • 10. 发明申请
    • QKD SYSTEM NETWORK
    • QKD系统网络
    • WO2006004629A2
    • 2006-01-12
    • PCT/US2005022663
    • 2005-06-28
    • MAGIQ TECHNOLOGIES INCVIG HARRYBERZANSKIS AUDRIUS
    • VIG HARRYBERZANSKIS AUDRIUS
    • H04L9/00H04L9/08
    • H04L9/0855
    • QKD system networks (50, 200, 300) and method s of communicating between end-users (P1, P2) over same are disclosed. An example QKD system network (50) includes a first QKD station (A1) and a second QKD station (A2) with a relay station (58) in between. The relay station includes a single third QKD station (B) and an optical switch (55). The optical switch allows the third QKD station to alternately communicate with the first and second QKD stations so as to establish a common key between the first and second QKD stations. The end-users are coupled to respective QKD stations A1 and A2. A secret key (S) is shared between P1 and P2 by QKD station B being able to independently form keys with A1 and A2. This basic system, represented as P1-A1-B-A2-P2, can be expanded into more complex linear networks, such as P1-A1-B1-A2-B2-P2 with B1 and A2 making up the relays. The basic QKD system network can also be expanded into multi-dimensions.
    • 公开了QKD系统网络(50,200,300)和终端用户(P1,P2)之间通信的方法。 示例QKD系统网络(50)包括第一QKD站(A1)和第二QKD站(A2),其间具有中继站(58)。 中继站包括单个第三QKD站(B)和光开关(55)。 光开关允许第三QKD站交替地与第一和第二QKD站通信,以便在第一和第二QKD站之间建立公共密钥。 终端用户连接到相应的QKD站A1和A2。 密钥(S)由P1和P2之间共享,QKD站B能够与A1和A2独立形成密钥。 表示为P1-A1-B-A2-P2的这个基本系统可以扩展成更复杂的线性网络,例如P1-A1-B1-A2-B2-P2,其中B1和A2组成继电器。 基本的QKD系统网络也可以扩展到多维度。