会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method for fabrication of a high capacitance interpoly dielectric
    • 高电容互聚电介质的制造方法
    • US06709990B2
    • 2004-03-23
    • US10267354
    • 2002-10-09
    • Mark A. GoodAmit S. Kelkar
    • Mark A. GoodAmit S. Kelkar
    • H01L21469
    • H01L21/02326H01L21/02164H01L21/0217H01L21/022H01L21/02271H01L21/3144
    • A method for fabricating a silicon dioxide/silicon nitride/silicon dioxide (ONO) stacked composite having a thin silicon nitride layer for providing a high capacitance interpoly dielectric structure. In the formation of the ONO composite, a bottom silicon dioxide layer is formed on a substrate such as polysilicon. A silicon nitride layer is formed on the silicon dioxide layer and is thinned by oxidation. The oxidation of the silicon nitride film consumes some of the silicon nitride by a reaction that produces a silicon dioxide layer. This silicon dioxide layer is removed with a hydrofluoric acid dilution. The silicon nitride layer is again thinned by re-oxidization as a top silicon dioxide layer is formed on the silicon nitride layer. A second layer of polysilicon is deposited over the silicon nitride, forming an interpoly dielectric.
    • 一种制造具有薄氮化硅层的二氧化硅/氮化硅/二氧化硅(ONO)层叠复合体的方法,用于提供高电容互聚电介质结构。 在ONO复合材料的形成中,在诸如多晶硅的衬底上形成底部二氧化硅层。 在二氧化硅层上形成氮化硅层,通过氧化而变薄。 氮化硅膜的氧化通过产生二氧化硅层的反应消耗一些氮化硅。 用氢氟酸稀释液除去该二氧化硅层。 当在氮化硅层上形成顶部二氧化硅层时,氮化硅层又被再次氧化而变薄。 在氮化硅上沉积第二层多晶硅,形成多晶硅间电介质。
    • 3. 发明授权
    • Method for depositing a selected thickness of an interlevel dielectric material to achieve optimum global planarity on a semiconductor wafer
    • 用于沉积选定厚度的层间电介质材料以在半导体晶片上实现最佳全局平面度的方法
    • US06291367B1
    • 2001-09-18
    • US09586660
    • 2000-06-01
    • Amit S. Kelkar
    • Amit S. Kelkar
    • H01L2131
    • H01L21/02274H01L21/02107H01L21/31051H01L21/31612H01L21/76819
    • A method of depositing an interlevel dielectric material on a semiconductor wafer at a selected thickness such that the best global planarity of the dielectric layer is achieved. A model for the deposition of a silicon dioxide layer is developed based upon the physics of deposition and sputtering and based upon the minimum geometry of features in the semiconductor device. First the geometric parameters of the metal features are determined. Then, based upon the most aggressive aspect ratio between metal lines, the deposition rate to sputter rate ratio is calculated. The film thickness for optimum global planarity is determined based on the calculated ratio. The dielectric material is then deposited on the metal features using HDP-CVD techniques in a manner using the calculated ratio to stop deposition at the determined film thickness such that the optimum thickness for global planarity is achieved.
    • 在半导体晶片上以选定的厚度沉积层间电介质材料的方法,使得实现电介质层的最佳全局平坦度。 基于沉积和溅射的物理学和基于半导体器件中的特征的最小几何形状开发沉积二氧化硅层的模型。 首先确定金属特征的几何参数。 然后,基于金属线之间最具侵蚀性的纵横比,计算沉积速率与溅射速率比。 基于计算出的比例确定最佳全局平面度的膜厚度。 然后使用HDP-CVD技术以介电材料沉积金属特征,使用计算出的比例,在所确定的膜厚度上停止沉积,使得实现全局平面度的最佳厚度。
    • 5. 发明授权
    • Method of forming shallow trench isolation structure in a semiconductor device
    • 在半导体器件中形成浅沟槽隔离结构的方法
    • US06828212B2
    • 2004-12-07
    • US10278294
    • 2002-10-22
    • Timothy M. BarryNicolas DegorsDonald A. EricksonAmit S. KelkarBradley J. Larsen
    • Timothy M. BarryNicolas DegorsDonald A. EricksonAmit S. KelkarBradley J. Larsen
    • H01L21762
    • H01L27/11521H01L21/3081H01L21/76235
    • A method for fabricating a shallow trench isolation structure is described, in which a bottom pad oxide layer, a middle silicon nitride layer, a middle oxide layer and a top silicon nitride layer are sequentially formed on a silicon substrate. Photolithographic masking and anisotropic etching are then conducted to form a trench in the substrate. An oxide material is then deposited on top of the top silicon nitride layer, filling up the trenches at the same time. A chemical mechanical polishing step is then employed to remove the oxide material by using the top silicon nitride layer as a barrier layer. The top silicon nitride layer is then removed, followed by an isotropic etch of the oxide layer below. With the middle nitride layer acting as a natural etch stop, the oxide material is sculpted to a desirable shape. The middle nitride layer and the pad oxide layer are subsequently removed to complete the fabrication of a shallow trench isolation structure.
    • 描述了一种用于制造浅沟槽隔离结构的方法,其中在硅衬底上依次形成底部衬垫氧化物层,中间氮化硅层,中间氧化物层和顶部氮化硅层。 然后进行光刻掩模和各向异性蚀刻以在衬底中形成沟槽。 然后将氧化物材料沉积在顶部氮化硅层的顶部,同时填充沟槽。 然后采用化学机械抛光步骤,通过使用顶部氮化硅层作为阻挡层去除氧化物材料。 然后去除顶部氮化硅层,随后对下面的氧化物层进行各向同性蚀刻。 当中间氮化物层用作自然蚀刻停止物时,氧化物材料被雕刻成期望的形状。 随后去除中间氮化物层和焊盘氧化物层以完成浅沟槽隔离结构的制造。
    • 6. 发明授权
    • Method for fabrication of a high capacitance interpoly dielectric
    • 高电容互聚电介质的制造方法
    • US06495475B2
    • 2002-12-17
    • US09821365
    • 2001-03-28
    • Mark A. GoodAmit S. Kelkar
    • Mark A. GoodAmit S. Kelkar
    • H01L21469
    • H01L21/02326H01L21/02164H01L21/0217H01L21/022H01L21/02271H01L21/3144
    • A method for fabricating a silicon dioxide/silicon nitride/silicon dioxide (ONO) stacked composite having a thin silicon nitride layer for providing a high capacitance interpoly dielectric structure. In the formation of the ONO composite, a bottom silicon dioxide layer is formed on a substrate such as polysilicon. A silicon nitride layer is formed on the silicon dioxide-layer and is thinned by oxidation. The oxidation of the silicon nitride film consumes some of the silicon nitride by a reaction that produces a temporary silicon dioxide layer. The temporary silicon dioxide layer is removed with a hydrofluoric acid dilution. The silicon nitride layer is again thinned by re-oxidization as a top silicon dioxide layer is formed on the silicon nitride layer. A layer of polysilicon is deposited over the silicon nitride, forming an interpoly dielectric.
    • 一种制造具有薄氮化硅层的二氧化硅/氮化硅/二氧化硅(ONO)层叠复合体的方法,用于提供高电容互聚电介质结构。 在ONO复合材料的形成中,在诸如多晶硅的衬底上形成底部二氧化硅层。 在二氧化硅层上形成氮化硅层,并通过氧化而变薄。 通过产生临时二氧化硅层的反应,氮化硅膜的氧化消耗一些氮化硅。 用氢氟酸稀释液除去临时二氧化硅层。 当在氮化硅层上形成顶部二氧化硅层时,氮化硅层又被再次氧化而变薄。 在氮化硅上沉积多晶硅层,形成多晶硅间电介质。
    • 7. 发明授权
    • Thermal processing of silicon wafers
    • 硅片的热处理
    • US08124916B2
    • 2012-02-28
    • US11735639
    • 2007-04-16
    • Amit S. KelkarLarry PuechnerDavid E. Billings
    • Amit S. KelkarLarry PuechnerDavid E. Billings
    • F27B5/04F27B5/16H01L21/324
    • H01L21/324F27B17/0025H01L21/67017H01L21/67253
    • Apparatus and methods that minimize surface defect development in silicon wafers during thermal processing at relatively high temperatures at which silicon wafers are annealed and at less extreme temperature, or for other purposes. The apparatus and methods have utility to horizontally-disposed furnaces for silicon wafers and to vertically-oriented furnaces in which larger wafers can be thermally processed. A selectively-sealable process tube encloses silicon wafers during heating of the silicon wafers to a predetermined temperature, and a heating atmosphere supply system induces through the process tube a positive flow of a process gas, such as hydrogen or argon, that is non-reactive with solid silicon at the predetermined temperature. A process tube outlet vents gas from the process tube, and an impurity sensor in the process tube outlet detects oxygen and moisture in the vented gas to verify the purity of the atmosphere surrounding the wafers during thermal processing.
    • 在硅晶片退火的较高温度和较不极端的温度下,或用于其他目的的热处理期间,硅晶片的表面缺陷发展最小化的装置和方法。 该装置和方法适用于用于硅晶片的水平布置的炉和垂直定向的炉,其中可以对较大的晶片进行热处理。 在将硅晶片加热至预定温度期间,可选择性密封的工艺管将硅晶片封装在一起,并且加热气氛供应系统通过处理管引起无反应性的工艺气体(例如氢气或氩气)的正流 固体硅处于预定温度。 处理管出口从处理管中排出气体,并且处理管出口中的杂质传感器检测排出气体中的氧气和水分,以验证热处理期间晶片周围的气氛的纯度。
    • 8. 发明申请
    • Thermal Processing of Silicon Wafers
    • 硅晶片的热处理
    • US20080254599A1
    • 2008-10-16
    • US11735639
    • 2007-04-16
    • Amit S. KelkarLarry PuechnerDavid E. Billings
    • Amit S. KelkarLarry PuechnerDavid E. Billings
    • H01L21/324F27B9/02
    • H01L21/324F27B17/0025H01L21/67017H01L21/67253
    • Apparatus and methods that minimize surface defect development in silicon wafers during thermal processing at relatively high temperatures at which silicon wafers are annealed and at less extreme temperature, or for other purposes. The apparatus and methods have utility to horizontally-disposed furnaces for silicon wafers and to vertically-oriented furnaces in which larger wafers can be thermally processed. A selectively-sealable process tube encloses silicon wafers during heating of the silicon wafers to a predetermined temperature, and a heating atmosphere supply system induces through the process tube a positive flow of a process gas, such as hydrogen or argon, that is non-reactive with solid silicon at the predetermined temperature. A process tube outlet vents gas from the process tube, and an impurity sensor in the process tube outlet detects oxygen and moisture in the vented gas to verify the purity of the atmosphere surrounding the wafers during thermal processing.
    • 在硅晶片退火的较高温度和较不极端的温度下,或用于其他目的的热处理期间,硅晶片的表面缺陷发展最小化的装置和方法。 该装置和方法适用于用于硅晶片的水平布置的炉和垂直定向的炉,其中可以对较大的晶片进行热处理。 在将硅晶片加热至预定温度期间,可选择性密封的工艺管将硅晶片封装在一起,并且加热气氛供应系统通过处理管引起无反应性的工艺气体(例如氢气或氩气)的正流 固体硅处于预定温度。 处理管出口从处理管中排出气体,并且处理管出口中的杂质传感器检测排出气体中的氧气和水分,以验证热处理期间晶片周围的气氛的纯度。