会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • MOS type semiconductor device having an impurity diffusion layer
    • 具有杂质扩散层的MOS型半导体器件
    • US06355963B1
    • 2002-03-12
    • US09514924
    • 2000-02-28
    • Akira HirokiShinji Odanaka
    • Akira HirokiShinji Odanaka
    • H02L2994
    • H01L29/0847H01L21/26586H01L29/1045H01L29/1083H01L29/66575H01L29/66659
    • A semiconductor device of the invention is formed so that the impurity concentration of a semiconductor substrate (1) under a source diffusion layer (2) is lower than the impurity concentration on a source side of a p-type impurity diffusion layer (6). Therefore, in the semiconductor device of the invention, the junction capacitance of the p-n junction between the source and the substrate is smaller as compared with a conventional LDC structure. In general, the speed of a device is proportional to the product obtained by multiplying together a load capacitance and an inverse of a current value of the device. Accordingly, in the case of applying the present invention to a circuit such as a NAND type CMOS circuit in which a voltage is applied to a region between the source and the substrate, the speed of the device is not decreased. On the other hand, the power consumption of a device is proportional to the product obtained by multiplying together a load capacitance and the square of an applied voltage. Consequently, according to the present invention, a semiconductor device which can be operated at a low power consumption is realized.
    • 本发明的半导体器件形成为使得源极扩散层(2)下方的半导体衬底(1)的杂质浓度低于p型杂质扩散层(6)的源极侧的杂质浓度。 因此,在本发明的半导体器件中,与传统的LDC结构相比,源极和衬底之间的p-n结的结电容较小。 通常,器件的速度与通过将负载电容和器件的当前值的反相相乘得到的乘积成比例。 因此,在将本发明应用于其中向源极和基板之间的区域施加电压的NAND型CMOS电路的电路的情况下,器件的速度不降低。 另一方面,器件的功耗与​​通过将负载电容和施加电压的平方相乘获得的乘积成比例。 因此,根据本发明,实现了能够以低功耗工作的半导体装置。
    • 3. 发明授权
    • Complementary semiconductor device and method for producing the same
    • 互补半导体器件及其制造方法
    • US6031268A
    • 2000-02-29
    • US121350
    • 1998-07-23
    • Akira HirokiShinji Odanaka
    • Akira HirokiShinji Odanaka
    • H01L21/265H01L21/336H01L21/8238H01L27/092H01L29/08H01L29/10H01L29/76
    • H01L29/66659H01L21/26586H01L21/823807H01L27/0922H01L29/0847H01L29/1045
    • A complementary semiconductor device which includes: a semiconductor substrate having a principal surface, with a first region doped with an impurity of a first conductivity type and a second region doped with an impurity of a second conductivity type; a first MOS transistor provided on the second region; and a second MOS transistor provided on the first region. In such a complementary semiconductor device, at least one of the first MOS transistor and the second MOS transistor is an asymmetric MOS transistor of the same conductivity type as the conductivity type of the corresponding region which is either the first region or the second region. The asymmetric MOS transistor further includes an asymmetric impurity diffusion region having a nonuniform impurity concentration distribution in the channel region along a channel length direction such that an impurity concentration on a source side is set to be higher than an impurity concentration on a drain side, and an impurity concentration of a portion of the semiconductor substrate beneath the first source region is lower than the impurity concentration on the source side of the asymmetric impurity diffusion region.
    • 一种互补半导体器件,包括:具有主表面的半导体衬底,掺杂有第一导电类型的杂质的第一区域和掺杂有第二导电类型的杂质的第二区域; 设置在第二区域上的第一MOS晶体管; 以及设置在第一区域上的第二MOS晶体管。 在这种互补半导体器件中,第一MOS晶体管和第二MOS晶体管中的至少一个是与作为第一区域或第二区域的对应区域的导电类型相同导电类型的非对称MOS晶体管。 非对称MOS晶体管还包括在沿着沟道长度方向的沟道区域中具有不均匀杂质浓度分布的不对称杂质扩散区域,使得源极侧的杂质浓度设定为高于漏极侧的杂质浓度, 第一源极区域下方的半导体衬底的一部分的杂质浓度低于不对称杂质扩散区域的源极侧的杂质浓度。
    • 4. 发明授权
    • Method for forming complementary MOS device having asymmetric region in
channel region
    • 在沟道区域中形成具有不对称区域的互补MOS器件的方法
    • US5830788A
    • 1998-11-03
    • US879579
    • 1997-06-20
    • Akira HirokiShinji Odanaka
    • Akira HirokiShinji Odanaka
    • H01L21/265H01L21/336H01L21/8238H01L27/092H01L29/08H01L29/10
    • H01L29/66659H01L21/26586H01L21/823807H01L27/0922H01L29/0847H01L29/1045
    • A complementary semiconductor device which includes: a semiconductor substrate having a principal surface, with a first region doped with an impurity of a first conductivity type and a second region doped with an impurity of a second conductivity type; a first MOS transistor provided on the second region; and a second MOS transistor provided on the first region. In such a complementary semiconductor device, at least one of the first MOS transistor and the second MOS transistor is an asymmetric MOS transistor of the same conductivity type as the conductivity type of the corresponding region which is either the first region or the second region. The asymmetric MOS transistor further includes an asymmetric impurity diffusion region having a nonuniform impurity concentration distribution in the channel region along a channel length direction such that an impurity concentration on a source side is set to be higher than an impurity concentration on a drain side, and an impurity concentration of a portion of the semiconductor substrate beneath the first source region is lower than the impurity concentration on the source side of the asymmetric impurity diffusion region.
    • 一种互补半导体器件,包括:具有主表面的半导体衬底,掺杂有第一导电类型的杂质的第一区域和掺杂有第二导电类型的杂质的第二区域; 设置在第二区域上的第一MOS晶体管; 以及设置在第一区域上的第二MOS晶体管。 在这种互补半导体器件中,第一MOS晶体管和第二MOS晶体管中的至少一个是与作为第一区域或第二区域的对应区域的导电类型相同导电类型的非对称MOS晶体管。 非对称MOS晶体管还包括在沿着沟道长度方向的沟道区域中具有不均匀杂质浓度分布的不对称杂质扩散区域,使得源极侧的杂质浓度设定为高于漏极侧的杂质浓度, 第一源极区域下方的半导体衬底的一部分的杂质浓度低于不对称杂质扩散区域的源极侧的杂质浓度。
    • 8. 发明申请
    • Fluid pressure cylinder apparatus having throttle valve
    • 具有节流阀的流体压力缸装置
    • US20070017363A1
    • 2007-01-25
    • US11480931
    • 2006-07-06
    • Akira HirokiTadashi Ishii
    • Akira HirokiTadashi Ishii
    • F15B13/04
    • F15B15/223
    • A cylindrically shaped valve rod is housed in a valve hole formed in a cylinder body in a manner so as to be rotatable around a center axis line, and a connecting hole having a first hole opening that is allowed to communicate with a first flow path hole, and a second hole opening that is allowed to communicate with a second flow path hole is formed in the valve rod. A flow adjusting groove that is extending in a circumferential direction around an outer periphery of the valve rod from a position of the first hole opening is formed, and the flow adjusting groove is formed such that a groove width gradually narrows toward a tip end side and the groove depth gradually shallows at the same time, so that the valve opening extent is adjusted along with rotating operation of the valve rod.
    • 圆柱形的阀杆容纳在形成在缸体中的阀孔中,以便能够围绕中心轴线旋转,以及具有第一孔口的连接孔,其允许与第一流路孔 并且在阀杆中形成允许与第二流路孔连通的第二孔开口。 形成有从第一开孔的位置沿圆周方向围绕阀杆的外周延伸的流量调节槽,并且流动调节槽形成为使得槽宽朝向前端侧逐渐变窄, 槽深度同时逐渐变浅,因此阀门开度随着阀杆的旋转运行而调整。
    • 9. 发明授权
    • MOS type semiconductor device having an impurity diffusion layer with a
nonuniform impurity concentration profile in a channel region
    • MOS型半导体器件具有在沟道区中具有不均匀杂质浓度分布的杂质扩散层
    • US6031272A
    • 2000-02-29
    • US836903
    • 1997-07-16
    • Akira HirokiShinji Odanaka
    • Akira HirokiShinji Odanaka
    • H01L29/78H01L21/265H01L21/336H01L29/08H01L29/10H01L29/786
    • H01L29/66575H01L21/26586H01L29/0847H01L29/1045H01L29/1083H01L29/66659
    • A semiconductor device of the invention is formed so that the impurity concentration of a semiconductor substrate under a source diffusion layer is lower than the impurity concentration on a source side of a p-type impurity layer. Therefore, in the semiconductor device of the invention, the junction capacitance of the p-n junction between the source and the substrate is smaller as compared with a conventional LDC structure. In general, the speed of a device is proportional to the product obtained by multiplying together a load capacitance and an inverse of a current value of the device. Accordingly, in the case of applying the present invention to a circuit such as a NAND type CMOS circuit in which a voltage is applied to a region between the source and the substrate, the speed of the device is not decreased. On the other hand, the power consumption of a device is proportional to the product obtained by multiplying together a load capacitance and the square of an applied voltage. Consequently, according to the present invention, a semiconductor device which can be operated at a low power consumption is realized.
    • PCT No.PCT / JP95 / 02329 Sec。 371日期1997年7月16日 102(e)日期1997年7月16日PCT 1995年11月15日PCT PCT。 出版物WO96 / 16432 日期1996年5月30日本发明的半导体器件形成为使得源极扩散层下的半导体衬底的杂质浓度低于p型杂质层的源极侧的杂质浓度。 因此,在本发明的半导体器件中,与传统的LDC结构相比,源极和衬底之间的p-n结的结电容较小。 通常,器件的速度与通过将负载电容和器件的当前值的反相相乘得到的乘积成比例。 因此,在将本发明应用于其中向源极和基板之间的区域施加电压的NAND型CMOS电路的电路的情况下,器件的速度不降低。 另一方面,器件的功耗与​​通过将负载电容和施加电压的平方相乘获得的乘积成比例。 因此,根据本发明,实现了能够以低功耗工作的半导体装置。
    • 10. 发明授权
    • MIS transistor with gate sidewall insulating layer
    • 具有栅极侧壁绝缘层的MIS晶体管
    • US5808347A
    • 1998-09-15
    • US23122
    • 1993-02-26
    • Kazumi KurimotoAkira HirokiShinji Odanaka
    • Kazumi KurimotoAkira HirokiShinji Odanaka
    • H01L21/336H01L29/76H01L27/088H01L29/94
    • H01L29/6659H01L29/6656Y10S257/90
    • A MIS transistor has a semiconductor substrate of a first conduction type; a gate insulation film and a gate electrode which are selectively formed on the semiconductor substrate; an insulating film formed on the side surface of the gate electrode and on the semiconductor substrate; a first gate side wall layer provided on the upper surface and side surface of the insulating film and having a dielectric constant greater than that of the insulating film, the first gate side wall layer having a height smaller than that of the gate electrode; and a second gate side wall layer composed of an insulating film which covers the first gate side wall layer. This MIS transistor can be produced by a known LSI production technique employing self-alignment, without increasing the number of the steps of the process.
    • MIS晶体管具有第一导电类型的半导体衬底; 选择性地形成在半导体衬底上的栅极绝缘膜和栅电极; 绝缘膜,形成在所述栅电极的侧表面和所述半导体衬底上; 所述第一栅极侧壁层设置在所述绝缘膜的上表面和侧表面上并且具有大于所述绝缘膜的介电常数的介电常数,所述第一栅极侧壁层的高度小于所述栅电极的高度; 以及由覆盖所述第一栅极侧壁层的绝缘膜构成的第二栅极侧壁层。 该MIS晶体管可以通过采用自对准的已知LSI生产技术制造,而不增加该工艺步骤的数量。