会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 84. 发明授权
    • Full color range interferometric modulation
    • 全色范围干涉调制
    • US07999995B2
    • 2011-08-16
    • US12568522
    • 2009-09-28
    • Akinori HashimuraDouglas J. TweetApostolos T. Voutsas
    • Akinori HashimuraDouglas J. TweetApostolos T. Voutsas
    • G02B26/00
    • G02B26/001
    • A full color range analog controlled interferometric modulation device is provided. The device includes a transparent substrate, and a transparent fixed-position electrically conductive electrode with a bottom surface overlying the substrate. A transparent spacer overlies the fixed-position electrode, and an induced absorber overlies the spacer. An optically reflective electrically conductive moveable membrane overlies the induced absorber. A cavity is formed between the induced absorber and the moveable membrane having a maximum air gap dimension less than the spacer thickness. In one aspect, the distance from the top surface of the fixed-position electrode to a cavity lower surface is at least twice as great as the cavity maximum air gap dimension. In another aspect, at least one anti-reflective coating (ARC) layer is interposed between the substrate and the fixed-position electrode, and at least one ARC layer is interposed between the fixed-position electrode and the spacer.
    • 提供全彩色范围的模拟控制干涉式调制装置。 该器件包括透明衬底和具有覆盖衬底的底表面的透明固定位置导电电极。 透明间隔物覆盖固定位置电极,诱导吸收体覆盖在间隔物上。 光反射导电的可移动膜覆盖在诱导的吸收体上。 在诱导的吸收体和具有小于间隔物厚度的最大气隙尺寸的可移动膜之间形成空腔。 在一个方面,从固定位置电极的顶表面到腔下表面的距离至少是腔最大气隙尺寸的两倍。 另一方面,在基板和固定位置电极之间插入至少一个抗反射涂层(ARC)层,并且在固定位置电极和间隔物之间​​插入至少一个ARC层。
    • 85. 发明申请
    • Plasmonic Electronic Skin
    • 等离子体电子皮肤
    • US20110109659A1
    • 2011-05-12
    • US12836121
    • 2010-07-14
    • Liang TangAkinori HashimuraApostolos T. Voutsas
    • Liang TangAkinori HashimuraApostolos T. Voutsas
    • G09G5/10G02F1/1333
    • G02F1/1334G02F1/23G02F2203/10G02F2203/34
    • A method is provided for color tuning a plasmonic device with a color tunable electronic skin. A plasmonic electronic skin is used, including a first substrate, a plasmonic structure, an electrically conductive transparent first electrode layer, an electrically conductive transparent second electrode layer, and a polymer-networked liquid crystal (PNLC) layer interposed between the first and second transparent electrode layers. In response to receiving a color tuning voltage, a full visible spectrum incident light, and a PNLC switch voltage, the plasmonic structure generates a first primary color. A primary color exhibits a single wavelength peak with a spectral full width at half magnitudes (FWHMs) in the visible spectrum of light. In response to receiving the PNLC switch voltage between the first and second electrode layers, the PNLC layer passes incident light.
    • 提供了一种用于颜色调节具有颜色可调电子皮肤的等离子体激元装置的方法。 使用等离子体激元电子皮肤,包括第一衬底,等离子体激元结构,导电透明第一电极层,导电透明第二电极层和介于第一和第二透明第二电极层之间的聚合物网状液晶(PNLC)层 电极层。 响应于接收到调色电压,完全可见光入射光和PNLC开关电压,等离子体激元结构产生第一原色。 原色在光的可见光谱中表现出具有半幅度的光谱全宽(FWHM)的单个波长峰。 响应于在第一和第二电极层之间接收PNLC开关电压,PNLC层通过入射光。
    • 87. 发明申请
    • Non-Stoichiometric SiOxNy Optical Filter Fabrication
    • 非化学计量的SiOxNy光学滤波器制造
    • US20100151152A1
    • 2010-06-17
    • US12700395
    • 2010-02-04
    • Pooran JoshiApostolos T. VoutsasJohn W. Hartzell
    • Pooran JoshiApostolos T. VoutsasJohn W. Hartzell
    • C23C16/34C23C16/42B05D5/06
    • G02B5/286Y10T428/259
    • A non-stoichiometric SiOXNY thin-film optical filter is provided. The filter is formed from a substrate and a first non-stoichiometric SiOX1NY1 thin-film overlying the substrate, where (X1+Y1 0). The first non-stoichiometric SiOX1NY1 thin-film has a refractive index (n1) in the range of about 1.46 to 3, and complex refractive index (N1=n1+ik1), where k1 is an extinction coefficient in a range of about 0 to 0.5. The first non-stoichiometric SiOX1NY1 thin-film may be either intrinsic or doped. In one aspect, the first non-stoichiometric SiOX1NY1 thin-film has nanoparticles with a size in the range of about 1 to 10 nm. A second non-stoichiometric SiOX2NY2 thin-film may overlie the first non-stoichiometric SiOX1NY1 thin-film, where Y1≠Y2. The second non-stoichiometric SiOX1NY1 thin-film may be intrinsic and doped. In another variation, a stoichiometric SiOX2NY2 thin-film, intrinsic or doped, overlies the first non-stoichiometric SiOX1NY1 thin-film.
    • 提供非化学计量的SiOXNY薄膜滤光片。 滤光片由衬底和覆盖衬底的第一非化学计量的SiOX1NY1薄膜形成,其中(X1 + Y1 <2和Y1> 0)。 第一非化学计量的SiOX1NY1薄膜的折射率(n1)在约1.46至3的范围内,复数折射率(N1 = n1 + ik1),其中k1是约0至 0.5。 第一非化学计量的SiOX1NY1薄膜可以是固有的或掺杂的。 在一个方面,第一非化学计量的SiOX1NY1薄膜具有尺寸在约1至10nm范围内的纳米颗粒。 第二非化学计量的SiOX2NY2薄膜可以覆盖第一非化学计量的SiOX1NY1薄膜,其中Y1≠Y2。 第二非化学计量的SiOX1NY1薄膜可以是固有的和掺杂的。 在另一个实施方案中,本征或掺杂的化学计量的SiOX2NY2薄膜覆盖在第一非化学计量的SiOX1NY1薄膜上。
    • 88. 发明申请
    • Silicon Nanoparticle Precursor
    • 硅纳米粒子前体
    • US20100047476A1
    • 2010-02-25
    • US12195673
    • 2008-08-21
    • Jer-Shen MaaGregory S. HermanApostolos T. Voutsas
    • Jer-Shen MaaGregory S. HermanApostolos T. Voutsas
    • B05D5/12H01B1/04
    • C01B33/021
    • A Si nanoparticle precursor, precursor fabrication process, and precursor deposition process are presented. The method for forming a silicon (Si) nanoparticle precursor provides a plurality of nanoparticle classes, including at least one Si nanoparticle class. The nanoparticles in each nanoparticle class are defined as having a predetermined diameter. A predetermined amount of each nanoparticle class is measured and combined. For example, a first Si nanoparticle class may be provided having a largest diameter and a second Si nanoparticle class having a second-largest diameter equal to about (0.43)×(the largest diameter). As another example, Si nanoparticle classes may foe provided having a diameter ratio of about 77:32:17.
    • 提出了Si纳米颗粒前体,前体制备工艺和前体沉积工艺。 形成硅(Si)纳米颗粒前体的方法提供多个纳米颗粒类别,包括至少一种Si纳米颗粒类。 每个纳米颗粒级中的纳米颗粒被定义为具有预定直径。 测量并组合每个纳米粒子类的预定量。 例如,可以提供具有最大直径的第一Si纳米颗粒类别和具有等于约(0.43)×(最大直径)的第二大直径的第二Si纳米颗粒类。 作为另一个实例,可以提供具有约77:32:17的直径比的Si纳米颗粒类。
    • 89. 发明申请
    • Crystalline Semiconductor Stripes
    • 晶体半导体条纹
    • US20090250791A1
    • 2009-10-08
    • US12099744
    • 2008-04-08
    • Themistokles AfentakisRobert S. SposiliApostolos T. Voutsas
    • Themistokles AfentakisRobert S. SposiliApostolos T. Voutsas
    • H01L21/20H01L27/12
    • H01L29/66757H01L21/02532H01L21/02609H01L21/02686H01L29/78696
    • Crystalline semiconductor stripes and an associated fabrication process are provided. The method provides an insulator substrate, and deposits a semiconductor layer overlying the insulator substrate. The semiconductor layer is irradiated using a scanning step-and-repeat laser annealing process, which agglomerates portions of the semiconductor layer. In response to cooling agglomerated semiconductor material, oriented crystalline semiconductor stripes are formed on the insulator substrate. The crystalline semiconductor stripes are aligned approximately with a straight line stripe axis overlying a top surface of the insulating substrate. Each crystalline semiconductor stripe includes a plurality of consecutive ring segments aligned with the stripe axis. The rings segments have a width about equal to the laser annealing process step distance. The crystalline semiconductor stripes typically have a top surface shape of a truncated cylinder or a parabolic cross section.
    • 提供了晶体半导体条纹和相关联的制造工艺。 该方法提供绝缘体衬底,并且沉积覆盖绝缘体衬底的半导体层。 使用扫描分步重复激光退火工艺照射半导体层,其使半导体层的部分凝聚。 响应于冷却聚集的半导体材料,在绝缘体基板上形成取向的结晶半导体条纹。 晶体半导体条纹大约与覆盖在绝缘基板的顶表面上的直线条纹轴对准。 每个晶体半导体条纹包括与条纹轴对准的多个连续的环段。 环段具有大约等于激光退火工艺步距的宽度。 晶体半导体条纹通常具有截顶圆柱体的顶表面形状或抛物线截面。