会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 83. 发明申请
    • ROBOT AND CONTROL METHOD THEREOF
    • 机器人及其控制方法
    • US20120078419A1
    • 2012-03-29
    • US13232383
    • 2011-09-14
    • Myung Hee KIMKyung Shik RohYoung Bo ShimSan Lim
    • Myung Hee KIMKyung Shik RohYoung Bo ShimSan Lim
    • G05B19/048
    • B25J9/1669
    • A robot and a control method thereof. The robot has plural robot arms, each having at least one joint unit and a hand, and the control method includes dividing an object into target and feasible grasp regions and storing grasp policies respectively corresponding to the grasp regions, sensing respective orientations of the object, the at least one joint unit, and an obstacle, judging whether or not grasping of the target grasp region is feasible after sensing the orientations, generating a grasp route using the grasp policy for the target grasp region, upon judging that grasping of the target grasp region is feasible, and generating a grasp route using the grasp policy for one of the feasible grasp regions, upon judging that grasping of the target grasp region is not feasible, and controlling the at least one joint unit and the hand to trace the generated grasp route.
    • 机器人及其控制方法。 机器人具有多个机械手臂,每个机械臂具有至少一个关节单元和一个手,并且该控制方法包括将物体分成目标和可能的把握区域,并分别对应于把持区域存储把握策略,检测物体的各个取向, 至少一个联合单元和障碍物,在判断抓住目标抓取之后,判断抓住目标抓握区域是否可行,在使用抓握方式的抓取策略生成抓取路线之后, 区域是可行的,并且在判断出目标把持区域的抓握不可行时,使用抓握策略生成一个可抓握区域的把握路线,并且控制至少一个关节单元和手来跟踪产生的抓握 路线。
    • 85. 发明申请
    • ROBOT AND CONTROL METHOD THEREOF
    • 机器人及其控制方法
    • US20120072022A1
    • 2012-03-22
    • US13232374
    • 2011-09-14
    • Myung Hee KIMKyung Shik RohYoung Bo ShimSan Lim
    • Myung Hee KIMKyung Shik RohYoung Bo ShimSan Lim
    • B25J9/16
    • B25J9/1679B25J9/1612B25J9/1666G05B2219/39113G05B2219/39473G05B2219/39474G05B2219/39542
    • A robot and a control method thereof. The robot has plural robot arms, each having at least one joint unit and a hand, and the control method includes calculating in advance and storing a plurality of grasp poses to generate grasp routes, sensing respective orientations of an object, the robot arms, and an obstacle, selecting one grasp pose from among the plurality of grasp poses by judging a movable angle range of the at least one joint unit, whether or not the object collides with the obstacle, and self-collision between the robot hands based on the sensed respective orientations, and generating grasp routes using the selected grasp pose. In the control method, the plurality of feasible grasp poses is calculated in advance and then stored, thereby rapidly and stably performing grasping of the object.
    • 机器人及其控制方法。 机器人具有多个机械手臂,每个具有至少一个关节单元和手,并且该控制方法包括预先计算并存储多个抓握姿势以产生抓握路线,感测物体的各个取向,机器人手臂和 障碍物,通过判断所述至少一个关节单元的可移动角度范围,所述物体是否与障碍物碰撞,以及基于所感测到的机器人手之间的自身碰撞,从所述多个抓握姿态中选择一个抓握姿态 各个取向,并使用所选择的抓握姿势产生抓握路线。 在该控制方法中,预先计算出多个可能抓握姿势,然后存储,由此快速且稳定地执行对象的抓握。
    • 87. 发明申请
    • WALKING ROBOT AND CONTROL METHOD THEREOF
    • 运动机器人及其控制方法
    • US20120059518A1
    • 2012-03-08
    • US13210480
    • 2011-08-16
    • Min Hyung LeeKyung Shik RohWoong Kwon
    • Min Hyung LeeKyung Shik RohWoong Kwon
    • B25J13/08
    • B62D57/032
    • A walking robot and a control method thereof. The robot includes at least one joint unit on each leg, a sensing unit to sense angle and angular velocity of the at least one joint unit, a memory unit to store data of the angle and angular velocity during stable walking, a target trajectory generation unit to generate a target trajectory, a control torque calculation unit to check stability of the at least one joint unit by comparing the sensed angle and angular velocity with the target trajectory, and, if an unstable joint unit is present, to calculate a control torque of the unstable joint unit to trace the target trajectory, and a servo control unit to transmit the calculated control torque to the unstable joint unit, thereby controlling torques of joint units using an FSM without solving the complicated dynamic equation, thus achieving stable walking.
    • 一种步行机器人及其控制方法。 所述机器人在每个支腿上包括至少一个关节单元,感测单元,用于感测至少一个关节单元的角度和角速度;存储单元,用于在稳定行走期间存储角度和角速度的数据;目标轨迹生成单元 以产生目标轨迹,控制扭矩计算单元,通过将感测到的角度和角速度与目标轨迹进行比较来检查至少一个关节单元的稳定性,并且如果存在不稳定的关节单元,则计算控制扭矩 用于跟踪目标轨迹的不稳定关节单元,以及用于将计算出的控制扭矩传递到不稳定关节单元的伺服控制单元,从而通过使用FSM来控制关节单元的扭矩,而不需要解决复杂的动力学方程,从而实现稳定的行走。
    • 88. 发明申请
    • WALKING CONTROL APPARATUS OF ROBOT AND METHOD OF CONTROLLING THE SAME
    • 机器人的摆动控制装置及其控制方法
    • US20110172825A1
    • 2011-07-14
    • US12984820
    • 2011-01-05
    • Min Hyung LeeWoong KwonKyung Shik RohJoong Kyung Park
    • Min Hyung LeeWoong KwonKyung Shik RohJoong Kyung Park
    • B25J13/08
    • B25J9/161
    • A walking control apparatus of a robot includes joint portions provided in each of a plurality of legs of the robot, a state database to store state data of each of the legs and state data of the joint portions corresponding to the state of each of the legs, when the robot walks, a position instruction unit to store desired positions corresponding to the state data of the joint portions, an inclination sensing unit to sense an inclination of an upper body of the robot, a torque calculator to calculate torques using the inclination of the upper body and the desired positions, and a servo controller to output the torques to the joint portions to control the walking of the robot. Since the robot walks by Finite State Machine (FSM) control and torque servo control, the rotation angles of the joint portions do not need to be accurately controlled. Thus, the robot walks with low servo gain and energy consumption is decreased. Since the robot walks with low servo gain, each of the joints has low rigidity and thus shock generated by collision with surroundings is decreased.
    • 机器人的步行控制装置包括设置在机器人的多个腿部的接合部,状态数据库,用于存储每个腿部的状态数据和对应于每个腿部的状态的关节部分的状态数据 当机器人行进时,位置指令单元存储对应于关节部分的状态数据的所需位置,倾斜感测单元,用于感测机器人上身的倾斜度;扭矩计算器,用于使用倾斜度 上身和所需位置,以及伺服控制器,用于将扭矩输出到接合部分,以控制机器人的行走。 由于机器人通过有限状态机(FSM)控制和扭矩伺服控制,所以不需要精确地控制接合部分的旋转角度。 因此,机器人行走时具有低伺服增益,能量消耗降低。 由于机器人以低伺服增益行走,每个接头具有低刚度,因此与周围环境碰撞产生的冲击减少。
    • 89. 发明申请
    • MARKERLESS AUGMENTED REALITY SYSTEM AND METHOD USING PROJECTIVE INVARIANT
    • 无标记的现实系统和使用投影不确定性的方法
    • US20110090252A1
    • 2011-04-21
    • US12905649
    • 2010-10-15
    • Suk June YOONKyung Shik RohSeung Yong HyungSung Hwa Ahn
    • Suk June YOONKyung Shik RohSeung Yong HyungSung Hwa Ahn
    • G09G5/00
    • G06T19/006G06T7/246G06T2207/10016
    • Disclosed herein are a markerless augmented reality system and method for extracting feature points within an image and providing augmented reality using a projective invariant of the feature points. The feature points are tracked in two images photographed while varying the position of an image acquisition unit, a set of feature points satisfying a plane projective invariant is obtained from the feature points, and augmented reality is provided based on the set of feature points. Accordingly, since the set of feature points satisfies the plane projective invariant even when the image acquisition unit is moved and functions as a marker, a separate marker is unnecessary. In addition, since augmented reality is provided based on the set of feature points, a total computation amount is decreased and augmented reality is more efficiently provided.
    • 这里公开了一种无标记增强现实系统和方法,用于提取图像内的特征点,并使用特征点的投影不变量提供增强现实。 在改变图像获取单元的位置的同时拍摄的两幅图像中跟踪特征点,从特征点获得满足平面投影不变性的一组特征点,并且基于特征点集合提供增强现实。 因此,即使图像获取单元被移动并用作标记,由于特征点集合满足平面投影不变性,因此不需要单独的标记。 此外,由于基于特征点集合提供增强现实,所以总计算量减少,增强现实更有效地提供。
    • 90. 发明申请
    • Robot and method of controlling balance thereof
    • 机器人及其平衡方法
    • US20100161116A1
    • 2010-06-24
    • US12588847
    • 2009-10-29
    • Ho Seong KwakKyung Shik RohWoong Kwon
    • Ho Seong KwakKyung Shik RohWoong Kwon
    • G06F19/00
    • B62D57/032
    • A finite state machine (FSM)-based biped robot, to which a limit cycle is applied to balance the robot right and left on a two-dimensional space, and a method of controlling balance of the robot. In order to balance an FSM-based biped robot right and left on a two-dimensional space, control angles to balance the robot according to states of the FSM-based biped robot are set. The range of the control angles is restricted to reduce the maximum right and left moving distance of the biped robot and thus to reduce the maximum right and left moving velocity of the biped robot, thereby reducing the sum total of the moments of the biped robot and thus allowing the ankles of the biped robot to balance the biped robot to be controlled, and causing the soles of the feet of the biped robot to parallel contact the ground.
    • 基于有限状态机(FSM)的双足机器人,其应用极限循环以在二维空间上左右平衡机器人,以及控制机器人平衡的方法。 为了平衡基于FSM的两足动物机器人在二维空间上的左右左右,设置了根据基于FSM的两足动物机器人的状态来平衡机器人的控制角度。 控制角度的范围被限制以减少双足机器人的最大左右移动距离,从而减少双足机器人的最大左右移动速度,从而减少两足动物机器人的力矩总和 从而允许Biped机器人的脚踝平衡要被控制的Biped机器人,并且使得双足机器人脚部的底脚平行地接触地面。