会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 85. 发明授权
    • Current-perpendicular-to-plane spin-valve sensor with metallic oxide barrier layer and method of fabrication
    • 具有金属氧化物阻挡层的电流垂直于平面的自旋阀传感器及其制造方法
    • US06731477B2
    • 2004-05-04
    • US09957252
    • 2001-09-20
    • Tsann LinDaniele Mauri
    • Tsann LinDaniele Mauri
    • G11B539
    • B82Y25/00B82Y10/00G01R33/093G11B5/012G11B5/3903G11B2005/3996Y10T29/49046
    • Disclosed is a system and method for forming a current-perpendicular-to-plane (CPP) spin-valve sensor with one or more metallic oxide barrier layers in order to provide a low junction resistance and a high GMR coefficient. In disclosed embodiments, the metallic oxide barrier layers are formed with oxygen-doping/in-situ oxidation processes comprising depositing a metallic film in a first mixture of argon and oxygen gases and subsequent in-situ oxidization in a second mixture of argon and oxygen gases. The exposure to oxygen may be conducted at a low partial oxygen pressure and at a moderate temperature. Smaller, more sensitive CPP spin-valve sensors may be formed through the use of the oxygen-doping/in-situ oxidization processes of the present invention, thus allowing for greater densities of disk drive systems.
    • 公开了一种用于形成具有一个或多个金属氧化物阻挡层的电流垂直平面(CPP)自旋阀传感器以提供低结电阻和高GMR系数的系统和方法。 在所公开的实施例中,金氧化物阻挡层由氧掺杂/原位氧化工艺形成,包括在氩气和氧气的第一混合物中沉积金属膜,随后在氩气和氧气的第二混合物中原位氧化 。 暴露于氧气可以在低的部分氧压力和中等温度下进行。 可以通过使用本发明的氧掺杂/原位氧化方法形成更小,更敏感的CPP自旋阀传感器,从而允许更高密度的磁盘驱动系统。
    • 87. 发明授权
    • Trilayer seed layer structure for spin valve sensor
    • 用于自旋阀传感器的三层种子层结构
    • US06411476B1
    • 2002-06-25
    • US09429525
    • 1999-10-28
    • Tsann LinDaniele Mauri
    • Tsann LinDaniele Mauri
    • G11B539
    • H01F10/3268B82Y10/00B82Y25/00G11B5/012G11B5/3133G11B5/3163G11B5/3903G11B2005/3996H01F10/3295
    • A trilayer seed layer structure is employed between a first read gap layer and a spin valve sensor for improving the magnetic and giant magnetoresistive properties and the thermal stability. In the spin valve sensor, the trilayer seed layer structure is located between a first read gap layer and a ferromagnetic free layer. The antiferromagnetic pinning layer is preferably nickel manganese (Ni—Mn). The trilayer seed layer structure includes a first seed layer that is a first metallic oxide, a second seed layer that is a second metallic oxide and a third seed layer that is a nonmagnetic metal. A preferred embodiment is a first seed layer of nickel oxide (NiO), a second seed layer of nickel manganese oxide (NiMnOx), and a third seed layer of copper (Cu).
    • 在第一读取间隙层和自旋阀传感器之间采用三层种子层结构,用于改善磁性和巨磁阻特性以及热稳定性。 在自旋阀传感器中,三层种子层结构位于第一读间隙层和铁磁自由层之间。 反铁磁性钉扎层优选为镍锰(Ni-Mn)。 三层种子层结构包括作为第一金属氧化物的第一籽晶层,作为第二金属氧化物的第二籽晶层和作为非磁性金属的第三籽晶层。 优选的实施方案是氧化镍(NiO)的第一种子层,镍锰氧化物(NiMnO x)的第二籽晶层和铜(Cu)的第三种子层。
    • 88. 发明授权
    • Spin valves with high uniaxial anisotropy reference and keeper layers
    • 具有高单轴各向异性参考和保持层的旋转阀
    • US6127053A
    • 2000-10-03
    • US85981
    • 1998-05-27
    • Tsann LinDaniele MauriJoseph Francis Smyth
    • Tsann LinDaniele MauriJoseph Francis Smyth
    • G11B5/66
    • G11B5/3932B82Y10/00B82Y25/00G01R33/093G01R33/098G11B2005/3996Y10S428/90Y10T428/1121
    • An SV sensor having a reference (pinned) layer formed of a first high uniaxial anisotropy ferromagnetic material, such as Co--Fe, and a keeper layer formed of a second high uniaxial anisotropy ferromagnetic material, such as Ni--Fe--Nb. Lapping induced stress in the Co--Fe layer having high positive magnetostriction generates a stress-induced uniaxial anisotropy field in the reference layer resulting in enhanced reference layer magnetization. This uniaxial anisotropy field is capable by itself of maintaining a substantial transverse reference layer saturation even at elevated temperatures. Lapping induced stress in the Ni--Fe--Nb layer having high positive magnetostriction generates a stress-induced uniaxial anisotropy field in the keeper layer providing more uniform magnetization and therefore better flux cancellation. The high electrical resistivity of the Ni--Fe--Nb keeper layer has the further benefit of reducing sense current shunting by the keeper layer.
    • 具有由诸如Co-Fe的第一高单轴各向异性铁磁材料形成的参考(钉扎)层的SV传感器和由第二高单轴各向异性铁磁材料如Ni-Fe-Nb形成的保持层。 在具有高正磁致伸缩的Co-Fe层中的研磨诱导应力在参考层中产生应力诱导的单轴各向异性场,导致增强的参考层磁化强度。 该单轴各向异性场本身即使在升高的温度下也能维持相当大的横向参考层饱和度。 具有高正磁致伸缩性的Ni-Fe-Nb层中的研磨诱导应力在保持层中产生应力诱导的单轴各向异性场,从而提供更均匀的磁化强度,从而提供更好的磁通消除。 Ni-Fe-Nb保持层的高电阻率进一步降低了保持层感应电流分流的好处。
    • 89. 发明授权
    • Spin valves with antiferromagnetic exchange pinning and high uniaxial
anisotropy reference and keeper layers
    • 旋转阀具有反铁磁交换钉扎和高单轴各向异性参考和保持层
    • US6117569A
    • 2000-09-12
    • US85687
    • 1998-05-27
    • Tsann LinDaniele Mauri
    • Tsann LinDaniele Mauri
    • G01R33/09G11B5/012G11B5/39G11B5/66
    • B82Y25/00B82Y10/00G01R33/093G11B5/012G11B5/3903G11B2005/3996Y10S428/90Y10T428/1121
    • An SV sensor having a reference (pinned) layer formed of a first high uniaxial anisotropy ferromagnetic material, such as Co--Fe, and a keeper layer formed of a second high uniaxial anisotropy ferromagnetic material, such as Ni--Fe--Nb. Lapping induced stress in the high positive magnetostriction Co--Fe layer generates a uniaxial anisotropy field in the pinned layer resulting in enhanced pinned layer magnetization. This uniaxial anisotropy field adds to the exchange field from an antiferromagnetic layer resulting in a substantially increased pinning field over the pinning field from the exhange interaction alone. The added uniaxial anisotropy field also improves the stability of the SV sensor at elevated temperatures since the uniaxial field is determined by a Curie temperature significantly higher than the blocking temperatures of antiferromagnetic materials. Lapping induced stress in the high positive magnetostriction Ni--Fe--Nb layer generates a uniaxial anisotropy field in the keeper layer providing more uniform magnetization and therefore better flux cancellation. The high electrical resistivity of the Ni--Fe--Nb keeper layer has the further benefit of reducing sense current shunting by the keeper layer.
    • 具有由诸如Co-Fe的第一高单轴各向异性铁磁材料形成的参考(钉扎)层的SV传感器和由第二高单轴各向异性铁磁材料如Ni-Fe-Nb形成的保持层。 在高正磁致伸缩Co-Fe层中的研磨诱导应力在钉扎层中产生单轴各向异性场,导致增强的钉扎层磁化强度。 这种单轴各向异性场从反铁磁层增加到交换场,从而仅在穿越相互作用的相互作用上导致钉扎场上的钉扎场大大增加。 增加的单轴各向异性场还提高了SV传感器在升高的温度下的稳定性,因为单轴场是由显着高于反铁磁材料的阻挡温度的居里温度决定的。 在高正磁致伸缩Ni-Fe-Nb层中的研磨诱导应力在保持层中产生单轴各向异性场,从而提供更均匀的磁化强度,从而提供较好的磁通消除。 Ni-Fe-Nb保持层的高电阻率进一步降低了保持层感应电流分流的好处。
    • 90. 发明授权
    • Magnetoresistive sensor having antiferromagnetic exchange bias
    • 具有反铁磁交换偏置的磁阻传感器
    • US5436778A
    • 1995-07-25
    • US213882
    • 1994-03-15
    • Tsann LinJames K. HowardCherngye HwangDaniele MauriNorbert Staud
    • Tsann LinJames K. HowardCherngye HwangDaniele MauriNorbert Staud
    • G11B5/39
    • G11B5/3903G11B5/3932
    • A magnetic disk storage system wherein a magnetic includes a magnetoresistive sensor is described. The MR sensor comprises a sputtered layer of ferromagnetic material and a sputtered layer of antiferromagnetic nickel-manganese (Ni-Mn) to provide an exchange coupled longitudinal bias field in the MR element. The antiferromagnetic layer overlays the MR layer and may be patterned to provide the longitudinal bias field only in the end regions of the MR layer. Alternatively, the antiferromagnetic layer can underlay the MR layer with a Zr underlayer to enhance the exchange-coupled field. As initially deposited, the Ni-Mn layer has a face-centered-cubic crystalline structure and exhibits little or no exchange-coupled field. After one annealing cycle at a relatively low temperature, the Ni-Mn layer crystalline structure is face-centered-tetragonal and exhibits increased crystallographic ordering and provides sufficient exchange coupling for the MR element to operate. Addition of chromium to the Ni-Mn alloy provides increased corrosion resistance.
    • 描述了一种磁盘存储系统,其中磁换能器包括磁阻传感器。 MR传感器包括铁磁材料的溅射层和反铁磁镍锰(Ni-Mn)的溅射层,以在MR元件中提供交换耦合的纵向偏置场。 反铁磁层覆盖MR层,并且可以被图案化以仅在MR层的端部区域中提供纵向偏置场。 或者,反铁磁层可以用Zr底层来衬底MR层以增强交换耦合场。 最初沉积时,Ni-Mn层具有面心立方晶体结构,并且表现出很少或没有交换耦合场。 在相对较低温度下的一个退火循环之后,Ni-Mn层晶体结构是面心四面体并且显示出增加的晶体顺序,并且为MR元件提供足够的交换耦合以进行操作。 向Ni-Mn合金中添加铬提高了耐腐蚀性。