会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 78. 发明申请
    • III-Nitride Device Grown on Edge-Dislocation Template
    • 边缘位错模板上生长的III型氮化物器件
    • US20090032828A1
    • 2009-02-05
    • US11833921
    • 2007-08-03
    • Linda T. RomanoPatrick N. Grillot
    • Linda T. RomanoPatrick N. Grillot
    • H01L33/00H01L21/20
    • H01L33/32H01L21/02378H01L21/0242H01L21/02458H01L21/02505H01L21/02507H01L21/02513H01L21/0254H01L33/12
    • A semiconductor light emitting device includes a wurtzite III-nitride semiconductor structure including a light emitting layer disposed between an n-type region and a p-type region. A template layer and a dislocation bending layer are grown before the light emitting layer. The template layer is grown such that at least 70% of the dislocations in the template layer are edge dislocations. At least some of the edge dislocations in the template layer continue into the dislocation bending layer. The dislocation bending layer is grown to have a different magnitude of strain than the template layer. The change in strain at the interface between the template layer and the dislocation bending layer causes at least some of the edge dislocations in the template layer to bend to a different orientation in the dislocation bending layer. Semiconductor material grown above the bent edge dislocations may exhibit reduced strain.
    • 半导体发光器件包括含有设置在n型区域和p型区域之间的发光层的纤锌矿III族氮化物半导体结构。 模板层和位错弯曲层在发光层之前生长。 生长模板层使得模板层中至少70%的位错是边缘位错。 模板层中的至少一些边缘位错继续进入位错弯曲层。 使位错弯曲层生长成具有与模板层不同的应变大小。 在模板层和位错弯曲层之间的界面处的应变变化导致模板层中的至少一些边缘位错在位错弯曲层中弯曲成不同的取向。 在弯曲边缘位错以上生长的半导体材料可能表现出减小的应变。
    • 79. 发明授权
    • Nitride-based laser diode with GaN waveguide/cladding layer
    • 氮化镓基激光二极管与GaN波导/包层
    • US07123637B2
    • 2006-10-17
    • US10394559
    • 2003-03-20
    • Michael A. KneisslDavid P. BourLinda T. RomanoChristian G. Van de Walle
    • Michael A. KneisslDavid P. BourLinda T. RomanoChristian G. Van de Walle
    • H01S5/00
    • B82Y20/00H01S5/0213H01S5/2009H01S5/2205H01S5/2231H01S5/3213H01S5/34333
    • A nitride-based laser diode structure utilizing a single GaN:Mg waveguide/cladding layer, in place of separate GaN:Mg waveguide and AlGaN:Mg cladding layers used in conventional nitride-based laser diode structures. When formed using an optimal thickness, the GaN:Mg layer produces an optical confinement that is comparable to or better than conventional structures. A thin AlGaN tunnel barrier layer is provided between the multiple quantum well and a lower portion of the GaN:Mg waveguide layer, which suppresses electron leakage without any significant decrease in optical confinement. A split-metal electrode is formed on the GaN:Mg upper waveguide structure to avoid absorption losses in the upper electrode metal. A pair of AlGaN:Si current blocking layer sections are located below the split-metal electrode sections, and separated by a gap located over the active region of the multiple quantum well.
    • 使用单个GaN:Mg波导/包覆层的氮化物基激光二极管结构代替用于常规氮化物基激光二极管结构中的单独的GaN:Mg波导和AlGaN:Mg包覆层。 当使用最佳厚度形成时,GaN:Mg层产生与传统结构相当或更好的光学约束。 在多量子阱和GaN:Mg波导层的下部之间提供薄的AlGaN隧道势垒层,其抑制电子泄漏,而不会明显减少光学限制。 在GaN:Mg上部波导结构上形成裂缝金属电极,以避免上部电极金属中的吸收损失。 一对AlGaN:Si电流阻挡层部分位于裂缝金属电极部分下方,并被位于多量子阱的有源区上方的间隙分开。