会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 71. 发明专利
    • Secondary battery
    • 二次电池
    • JP2010135231A
    • 2010-06-17
    • JP2008311371
    • 2008-12-05
    • Sumitomo Electric Ind Ltd住友電気工業株式会社
    • MIZUNO OSAMUAWATA HIDEAKIKANNO TAKESHIUEDA MITSUHOIKUTA RIKIZO
    • H01M10/0562H01M2/02H01M10/052H01M10/058
    • Y02E60/122
    • PROBLEM TO BE SOLVED: To provide a secondary battery capable of coping with the expansion-contraction caused by charge-discharge, while using a laminate film for an enclosing body. SOLUTION: This secondary battery has a wholly fixed type secondary battery 1 of expanding-contracting in response to the charge-discharge, and an aluminum laminate film 3 for sealing the secondary battery in a vacuum, and is characterized in that an edge part E forming the edge by overlapping the aluminum laminate film by two sheets, is formed around the secondary battery, and in the edge part, the aluminum laminate film forms a non-press-fitting part 3a of non-press-fitting for surrounding the secondary battery and a thermally fusing part 3b thermally fused for forming the outer edge so as to surround the non-press-fitting part. COPYRIGHT: (C)2010,JPO&INPIT
    • 要解决的问题:提供一种能够应对由充放电引起的膨胀收缩的二次电池,同时使用用于封闭体的层压膜。 解决方案:该二次电池具有响应于充放电而伸缩的完全固定型二次电池1和用于在真空中密封二次电池的铝层压膜3,其特征在于,边缘 在二次电池周围形成由铝层压膜重叠两片而形成边缘的部分E,并且在边缘部分中,铝层压膜形成非压配合的非压配部分3a,以围绕 二次电池和热熔融部分3b,用于形成外边缘以包围非压配部件。 版权所有(C)2010,JPO&INPIT
    • 72. 发明专利
    • Battery and method for manufacturing the same
    • 电池及其制造方法
    • JP2010080210A
    • 2010-04-08
    • JP2008246167
    • 2008-09-25
    • Sumitomo Electric Ind Ltd住友電気工業株式会社
    • UEDA MITSUHOMIZUNO OSAMUAWATA HIDEAKIKANNO TAKESHIIKUTA RIKIZO
    • H01M4/134H01M4/1395H01M4/38H01M10/052H01M10/0562H01M10/0585
    • Y02P70/54
    • PROBLEM TO BE SOLVED: To provide a battery capable of simplifying a manufacturing process of a negative electrode active material layer and easily thinning, and to provide its manufacturing method. SOLUTION: A positive electrode active material layer 1b and a solid electrolyte layer 3 are formed in order on a positive electrode collector 1a. A lithium film 2b1 is formed on the solid electrolyte layer 3 by a physical deposition method. Furthermore, an aluminum film 2b2 is formed on the lithium film 2b1 by a physical deposition method. Then, reaction of lithium and aluminum is generated, without having to apply a treatment where a current is applied to the electrolyte, if it is left standing, and a lithium alloy film with approximately uniform composition is formed. The negative electrode active material layer 2b can be formed from the lithium alloy film. It is preferable that the thickness of the lithium alloy film be in a range of 0.2-20 μm, and more preferably, a range of less than 5 μm. COPYRIGHT: (C)2010,JPO&INPIT
    • 解决的问题:提供能够简化负极活性物质层的制造工序并容易变薄的电池,并提供其制造方法。 解决方案:在正极集电体1a上依次形成正极活性物质层1b和固体电解质层3。 通过物理沉积方法在固体电解质层3上形成锂膜2b1。 此外,通过物理沉积方法在锂膜2b1上形成铝膜2b2。 然后,如果放置电解液,则不需要施加电流施加电流的处理,并且形成具有大致均匀组成的锂合金膜,从而产生锂和铝的反应。 负极活性物质层2b可以由锂合金膜形成。 锂合金膜的厚度优选为0.2〜20μm的范围,更优选为5μm以下的范围。 版权所有(C)2010,JPO&INPIT
    • 73. 发明专利
    • Battery
    • 电池
    • JP2010003654A
    • 2010-01-07
    • JP2008163893
    • 2008-06-23
    • Sumitomo Electric Ind Ltd住友電気工業株式会社
    • MIZUNO OSAMUAWATA HIDEAKIKANNO TAKESHIUEDA MITSUHOIKUTA RIKIZOEMURA KATSUJI
    • H01M10/0562H01M2/22H01M2/34H01M10/0585
    • Y02E60/12
    • PROBLEM TO BE SOLVED: To provide a battery capable of realizing capacity increase by preventing an electrical short circuit and by using parallel connection structure.
      SOLUTION: Rectangular stacking elements A-D are stacked in two regions out of regions R1-R4. As a result, a positive current collector 1a and a negative current collector 2a are connected like a spiral staircase. A plurality of unit cell parts are arranged in parallel between connected bodies of the positive current collector 1a and the negative current collector 2a. The unit cell part is composed of a positive active material layer 1b, a solid electrolyte layer 3, and a negative active material layer 2b. By drawing out each one lead member of the lowermost part and uppermost part, connection to an outside terminal can be conducted. Thereby, electrical short circuit caused by drawing out of many current collectors can be prevented. By arranging many unit cell parts in parallel between the pair of positive and negative current collectors, battery capacity is enhanced.
      COPYRIGHT: (C)2010,JPO&INPIT
    • 要解决的问题:提供一种能够通过防止电气短路和使用并联连接结构来实现容量增加的电池。 解决方案:矩形堆叠元件A-D堆叠在区域R1-R4之外的两个区域中。 结果,正极集电体1a和负极集电体2a连接成螺旋状的阶梯状。 在正极集电体1a和负极集电体2a的连接体之间并列配置有多个单位电池部。 单元电池部由正极活性物质层1b,固体电解质层3和负极活性物质层2b构成。 通过拉出最下部分和最上部分的每一个引导部件,可以进行与外部终端的连接。 由此,可以防止由许多集电体拉出而导致的电短路。 通过在一对正集电器和负极集电器之间并联布置许多单元电池部件,电池容量增加。 版权所有(C)2010,JPO&INPIT
    • 74. 发明专利
    • Film-forming method and battery
    • 电影制作方法和电池
    • JP2009277565A
    • 2009-11-26
    • JP2008129186
    • 2008-05-16
    • Sumitomo Electric Ind Ltd住友電気工業株式会社
    • IKUTA RIKIZOMIZUNO OSAMUAWATA HIDEAKIKANNO TAKESHIUEDA MITSUHO
    • H01M6/18H01M10/052H01M10/0562
    • Y02P70/54
    • PROBLEM TO BE SOLVED: To provide a film-forming method capable of preventing cracks of a solid electrolyte layer and a battery utilizing the same.
      SOLUTION: A positive electrode active material layer 1b is formed on a positive electrode collector 1a. The positive electrode active material layer 1b is heated at a temperature of around 500°C to be annealed. The temperature (base material temperature) of the positive electrode active material layer 1b is retained within a range of >200°C and ≤300°C to form a solid electrolyte layer 3. At this time, vapor-phase growth such as vacuum deposition, sputtering, laser ablation, and ion plating is used. The solid electrolyte layer 3 contains at least one substance selected from phosphorus, silicon, germanium, and gallium, and lithium as well as sulfur. Out of them, an atom percentage of lithium is 20 to 65%. No cracks are generated at the solid electrolyte layer 3 even if it is put through a soldering reflow furnace.
      COPYRIGHT: (C)2010,JPO&INPIT
    • 要解决的问题:提供能够防止固体电解质层的裂纹和利用其的电池的成膜方法。 解决方案:在正极集电体1a上形成正极活性物质层1b。 将正极活性物质层1b在约500℃的温度下加热以进行退火。 正极活性物质层1b的温度(基材温度)保持在> 200℃〜300℃的范围内,形成固体电解质层3.此时,气相生长例如真空蒸镀 ,溅射,激光烧蚀和离子电镀。 固体电解质层3含有选自磷,硅,锗和镓中的至少一种物质,以及锂以及硫。 其中,锂的原子百分比为20〜65%。 即使固体电解质层3通过焊接回流炉,也不产生裂纹。 版权所有(C)2010,JPO&INPIT
    • 76. 发明专利
    • Lithium battery
    • 锂电池
    • JP2009016213A
    • 2009-01-22
    • JP2007177691
    • 2007-07-05
    • Sumitomo Electric Ind Ltd住友電気工業株式会社
    • YOSHIDA KENTAROMIZUNO OSAMUEMURA KATSUJI
    • H01M2/02H01M10/052H01M10/0562H01M10/0585
    • Y02E60/122
    • PROBLEM TO BE SOLVED: To provide a lithium battery more surely preventing a short circuit between positive and negative electrodes caused by lithium crystals compared with a lithium battery of conventional structure using a solid electrolyte.
      SOLUTION: The lithium battery 1 is equipped with a positive electrode layer 13 and a negative electrode layer 14 both absorbing and releasing lithium and a solid electrolyte layer 15 which mediates conduction of lithium ions between these layers. The lithium battery 1 has a blocking layer 16 physically blocking the growth of lithium crystals in a position blocking a growing route of lithium crystals on the surface of the solid electrolyte layer 15. The blocking layer 16 is made of insulating resin having substantially no lithium ion conductivity.
      COPYRIGHT: (C)2009,JPO&INPIT
    • 要解决的问题:与使用固体电解质的常规结构的锂电池相比,为了提供更可靠地防止由锂晶体引起的正极和负极之间的短路的锂电池。 解决方案:锂电池1配备有吸收和释放锂的正极层13和负极层14以及介于这些层之间的锂离子传导的固体电解质层15。 锂电池1具有在阻挡锂离子在固体电解质层15表面的生长路径的位置上物理阻挡锂晶体生长的阻挡层16.阻挡层16由基本上不含锂离子的绝缘树脂 电导率。 版权所有(C)2009,JPO&INPIT
    • 78. 发明专利
    • Hydrogen permeable structure, and fuel cell using it
    • 氢气渗透性结构和燃料电池使用它
    • JP2008171775A
    • 2008-07-24
    • JP2007006163
    • 2007-01-15
    • Sumitomo Electric Ind LtdToyota Motor Corpトヨタ自動車株式会社住友電気工業株式会社
    • MIZUNO OSAMUKAMIMURA TAKUMURANAKA KOJIITO NAOKI
    • H01M8/02B01D69/12B01D71/02C01B3/56H01M4/94
    • Y02E60/50
    • PROBLEM TO BE SOLVED: To provide a hydrogen permeable structure containing an oxide proton conductive membrane and used for fuel cells capable of attaining high cell output when used for a fuel cell without being deteriorated by carbon dioxide, and to provide a fuel cell using this hydrogen permeable structure. SOLUTION: The invention provides a hydrogen permeable structure and a fuel cell using the same. The hydrogen permeable structure comprises a metal substrate having a hydrogen permeating function and a multi-layered oxide proton conductive membrane formed on the substrate.The oxide proton conductive membrane is made of a proton conductive oxide expressed by chemical formula A: (Zr 1 -xMx)O 3 (where, A is an alkali earth metal; M is Nd, Y, In, Yb, Sc, Gd, Sm or Pr; and 0.1≤x COPYRIGHT: (C)2008,JPO&INPIT
    • 要解决的问题:提供含有氧化物质子传导膜的氢可渗透结构,并且用于能够在用于燃料电池的情况下获得高电池输出而不被二氧化碳劣化的燃料电池,并且提供燃料电池 使用这种氢可渗透结构。 解决方案:本发明提供氢可渗透结构和使用其的燃料电池。 氢可渗透结构包括具有氢渗透功能的金属基底和形成在基底上的多层氧化物质子传导膜。氧化物质子传导膜由化学式A表示的质子传导氧化物制成:(Zr 3其中,A为碱土金属; M为Nd,Y,In,Yb,Sc,Gd,Sm或Pr;0.1≤x< 0.8),并且包括厚度为0.01至2μm的顶层和基本上不含Zr的另一层。 版权所有(C)2008,JPO&INPIT
    • 79. 发明专利
    • Proton conductor having multilayer structure suppressing oxide ion conductivity and structure using it
    • 具有抑制氧化物离子电导率和结构的多层结构的导体导体
    • JP2007257937A
    • 2007-10-04
    • JP2006079084
    • 2006-03-22
    • Sumitomo Electric Ind Ltd住友電気工業株式会社
    • KANDA RYOKOMIZUNO OSAMUBOKU TATSUTAMA
    • H01M8/02
    • Y02E60/50
    • PROBLEM TO BE SOLVED: To provide a proton conductor having multilayer structure enhancing adhesion of a cathode substrate and an oxide layer by suppressing the oxygen ion conductivity of an oxide layer while maintaining high conductivity. SOLUTION: The proton conductor is formed by placing a proton conductive oxide layer on one surface of a hydrogen permeable cathode substrate, and placing an interposing layer comprising an oxide having a low oxygen ion deficiency on the oxide layer. The thickness of the interposing layer is preferably 10-50 nm, and the chemical component system of the interposing layer is desirably the same as the oxide layer. The proton conductor is high in adhesion between the cathode substrate and the oxide layer, and has high proton conductivity and is applicable to various kinds of hydrogen device. COPYRIGHT: (C)2008,JPO&INPIT
    • 要解决的问题:提供一种具有多层结构的质子导体,其通过在保持高导电性的同时抑制氧化物层的氧离子传导性而提高阴极衬底和氧化物层的粘合性。 解决方案:质子导体是通过在氢可渗透的阴极衬底的一个表面上放置质子传导氧化物层,并将包含氧离子不足氧化物的插入层放置在氧化物层上而形成的。 中间层的厚度优选为10〜50nm,中间层的化学成分体系理想地与氧化物层相同。 质子导体在阴极基板和氧化物层之间的粘附性高,具有高质子传导性,适用于各种氢装置。 版权所有(C)2008,JPO&INPIT
    • 80. 发明专利
    • Method of manufacturing hydrogen permeable structure, hydrogen permeable structure, and fuel cell
    • 氢化渗透性结构,氢化渗透性结构和燃料电池的制造方法
    • JP2007103273A
    • 2007-04-19
    • JP2005294411
    • 2005-10-07
    • Sumitomo Electric Ind LtdToyota Motor Corpトヨタ自動車株式会社住友電気工業株式会社
    • MIZUNO OSAMUKAMIMURA TAKUMURANAKA KOJIITO NAOKI
    • H01M8/02
    • Y02E60/50
    • PROBLEM TO BE SOLVED: To provide a method of manufacturing a hydrogen permeable structure having an oxide proton conductive film composed of oxide on a metal base material having a hydrogen permeable performance, the method enabling to form the oxide proton conductive film composed of the oxide of high crystallinity without oxidizing the metal base material, and to provide the hydrogen permeable structure manufactured by this method, and a fuel cell using the hydrogen permeable structure.
      SOLUTION: This is the method of manufacturing the hydrogen permeable structure having a process of forming an oxide film by vapor-depositing the oxide containing an alkaline earth group metal as well as a metal selected from Zr and Ce on the metal base material having the hydrogen permeable performance in an oxidizing atmosphere of 400°C or less, and a process of heating this oxide film at 450°C or more in a non-oxidizing atmosphere. This is the hydrogen permeable structure manufactured by the method, and the fuel cell using the hydrogen permeable structure.
      COPYRIGHT: (C)2007,JPO&INPIT
    • 解决问题的方法:提供一种制造具有氧化物质子传导膜的氢可渗透结构的方法,该氧化物质子传导膜由具有氢可渗透性能的金属基材上由氧化物构成,该方法能够形成由 不会氧化金属基材的高结晶度的氧化物,提供通过该方法制造的氢可渗透结构,以及使用氢可渗透结构的燃料电池。 解决方案:这是制造氢可渗透结构的方法,其具有通过在金属基材上气相沉积含有碱土金属的氧化物以及选自Zr和Ce的金属来形成氧化膜的方法 在400℃以下的氧化气氛中具有氢可渗透性,以及在非氧化性气氛中将该氧化膜加热至450℃以上的工序。 这是通过该方法制造的氢可渗透结构,以及使用氢可渗透结构的燃料电池。 版权所有(C)2007,JPO&INPIT