会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 71. 发明授权
    • Method of reducing MOS transistor gate beyond photolithographically
patterned dimension
    • 减少MOS晶体管栅极超过光刻图案尺寸的方法
    • US5786256A
    • 1998-07-28
    • US684407
    • 1996-07-19
    • Mark I. GardnerFred N. HauseH. Jim Fulford, Jr.
    • Mark I. GardnerFred N. HauseH. Jim Fulford, Jr.
    • H01L21/28H01L21/336H01L21/3205
    • H01L29/66583H01L21/28123
    • A semiconductor fabrication process for fabricating MOS transistors in which dielectric spacer structures are used prior to gate formation to reduce the gate length below the minimum feature size resolvable by the photolithography equipment. A semiconductor substrate having a channel region laterally disposed between a pair of source/drain regions is provided. A dielectric stack is formed on an upper surface of the semiconductor substrate and patterned to expose an upper surface of a spacer region of the semiconductor substrate. The spacer region includes the channel region and peripheral portions of the pair of source/drain regions proximal to the channel region. The patterning of the dielectric stack results in the formation of a pair of opposing sidewalls in the dielectric stack. Thereafter, a pair of first spacer structures are formed on the pair of opposing sidewalls such that the pair of first spacer structures cover or shadow the peripheral portions of the source/drain regions and such that an upper surface of the channel region is exposed. A gate structure is then formed on the upper surface of the channel region. The gate structure is laterally disposed between the pair of first spacer structures. A first dopant species is then introduced into the source/drain regions of the semiconductor substrate.
    • 一种用于制造MOS晶体管的半导体制造工艺,其中在栅极形成之前使用电介质间隔物结构以将栅极长度减小到低于由光刻设备可分辨的最小特征尺寸。 提供具有横向设置在一对源/漏区之间的沟道区的半导体衬底。 在半导体衬底的上表面上形成电介质叠层,并将其图案化以暴露半导体衬底的间隔区域的上表面。 间隔区域包括通道区域和靠近通道区域的一对源极/漏极区域的外围部分。 电介质堆叠的图案化导致在电介质叠层中形成一对相对的侧壁。 此后,一对第一间隔结构形成在一对相对的侧壁上,使得该对第一间隔结构覆盖或遮蔽源极/漏极区的周边部分,并且使得沟道区的上表面露出。 然后在沟道区域的上表面上形成栅极结构。 栅极结构横向设置在该对第一间隔结构之间。 然后将第一掺杂剂物质引入到半导体衬底的源极/漏极区域中。
    • 72. 发明授权
    • Method of making asymmetrical transistor with lightly doped drain
region, heavily doped source and drain regions, and ultra-heavily doped
source region
    • 制造具有轻掺杂漏极区域,重掺杂源极和漏极区域以及超重掺杂源极区域的不对称晶体管的方法
    • US5648286A
    • 1997-07-15
    • US711383
    • 1996-09-03
    • Mark I. GardnerH. Jim Fulford, Jr.Derick J. Wristers
    • Mark I. GardnerH. Jim Fulford, Jr.Derick J. Wristers
    • H01L21/336H01L29/78H01L21/265
    • H01L29/66659H01L29/7835
    • An asymmetrical IGFET including a lightly doped drain region, heavily doped source and drain regions, and an ultra-heavily doped source region is disclosed. Preferably, the lightly doped drain region and heavily doped source region provide channel junctions. A method of making the IGFET includes providing a semiconductor substrate, forming a gate with first and second opposing sidewalls over the substrate, applying a first ion implantation to implant lightly doped source and drain regions into the substrate, applying a second ion implantation to convert the lightly doped source region into a heavily doped source region without doping the lightly doped drain region, forming first and second spacers adjacent to the first and second sidewalls, respectively, and applying a third ion implantation to convert a portion of the heavily doped source region outside the first spacer into an ultra-heavily doped source region without doping a portion of the heavily doped source region beneath the first spacer, and to convert a portion of the lightly doped drain region outside the second spacer into a heavily doped drain region without doping a portion of the lightly doped drain region beneath the second spacer. Advantageously, the IGFET has low source-drain series resistance and reduces hot carrier effects.
    • 公开了一种包括轻掺杂漏极区域,重掺杂源极和漏极区域以及超重掺杂源极区域的非对称IGFET。 优选地,轻掺杂漏极区域和重掺杂源极区域提供通道结。 制造IGFET的方法包括提供半导体衬底,在衬底上形成具有第一和第二相对侧壁的栅极,施加第一离子注入以将轻掺杂的源极和漏极区域注入到衬底中,施加第二离子注入以将 轻掺杂源区域分成重掺杂源区,而不掺杂轻掺杂漏极区,分别与第一和第二侧壁相邻形成第一和第二间隔,并施加第三离子注入以将重掺杂源区的一部分转换到外部 所述第一间隔物进入超重掺杂源区,而不掺杂所述第一间隔物下方的重掺杂源区的一部分,以及将所述第二间隔区外部的所述轻掺杂漏极区的一部分转换为重掺杂漏极区,而不掺杂 第二间隔物下方的轻掺杂漏极区的部分。 有利地,IGFET具有低的源极 - 漏极串联电阻并且降低热载流子效应。
    • 73. 发明授权
    • Test structure for electrically measuring the degree of misalignment between successive layers of conductors
    • 用于电测量连续导体层之间的未对准程度的测试结构
    • US06380554B1
    • 2002-04-30
    • US09093358
    • 1998-06-08
    • John J. BushH. Jim Fulford, Jr.Mark I. Gardner
    • John J. BushH. Jim Fulford, Jr.Mark I. Gardner
    • H01L2358
    • G03F7/70633G03F7/70658H01L22/34H01L2924/3011
    • The present invention advantageously provides a test structure and method for using electrical measurements to determine the overlay between successive layers of conductors lithographically patterned upon a semiconductor topography. According to an embodiment, a test structure is provided which includes first, second, and third conductive structures having first, second, and third corner regions, respectively. Alternatively, the conductive structures may include only a single conductive structure having three corner regions. Each corner region is bounded by a pair of outer lateral edges configured substantially perpendicular to one another. First, second, and third conductors are operably coupled to the first, second, and third corner regions, respectively, such that overlapping areas of the conductors arranged directly above the corner regions are substantially rectangular in shape. The layout design for the test structure specifies the targeted dimensions, x and y, of each overlapping area. Fabrication of the test structure may result in the overlapping areas being shifted from their targeted positions such that their dimensions are larger or smaller than their targeted values. The amount by which the overlapping areas are shifted in the x direction is known as &Dgr;x, and the amount by which the overlapping areas are shifted in the y direction is known as &Dgr;y. The contact resistances between the overlapping areas of the conductors and the corner regions may be found and substituted into equations for &Dgr;x and &Dgr;y.
    • 本发明有利地提供了一种测试结构和方法,用于使用电测量来确定在半导体拓扑图上光刻图案化的导体的连续层之间的叠层。 根据一个实施例,提供一种测试结构,其包括分别具有第一,第二和第三角区域的第一,第二和第三导电结构。 或者,导电结构可以仅包括具有三个拐角区域的单个导电结构。 每个拐角区域由基本上彼此垂直配置的一对外侧边缘限定。 第一,第二和第三导体分别可操作地耦合到第一,第二和第三拐角区域,使得直接布置在拐角区域上方的导体的重叠区域基本上是矩形的。 测试结构的布局设计指定每个重叠区域的目标尺寸x和y。 测试结构的制造可能导致重叠区域从其目标位置偏移,使得其尺寸大于或小于其目标值。 重叠区域在x方向上偏移的量被称为DELTAx,并且重叠区域在y方向上偏移的量被称为DELTAY。 可以找到导体和拐角区域的重叠区域之间的接触电阻,并将其代入DELTAx和DELTAY的等式。
    • 76. 发明授权
    • Transistor having a gate dielectric which is substantially resistant to drain-side hot carrier injection
    • 晶体管具有基本上耐漏极侧热载流子注入的栅电介质
    • US06297535B1
    • 2001-10-02
    • US09510096
    • 2000-02-22
    • Mark I. GardnerH. Jim Fulford, Jr.
    • Mark I. GardnerH. Jim Fulford, Jr.
    • H01L31119
    • H01L29/66659H01L21/28176H01L21/28194H01L29/518H01L29/6659H01L29/7833Y10S257/90Y10S438/91
    • A transistor fabrication process is provided which derives a benefit from having barrier atoms incorporated in a lateral area under a gate oxide of the transistor in close proximity to the drain. To form the transistor, a gate oxide layer is first grown across a silicon-based substrate. A polysilicon layer is then deposited across the gate oxide layer. Portions of the polysilicon layer and the oxide layer are removed to form a gate conductor and gate oxide, thereby exposing source-side and drain-side junctions within the substrate. An LDD implant is performed to lightly dope the source-side and drain-side junctions. An etch stop material may be formed upon opposed sidewall surfaces of the gate conductor, the upper surface of the gate conductor, and the source-side and drain-side junctions. Spacers may then be formed laterally adjacent the etch stop material located upon sidewall surfaces of the gate conductor. The unmasked portions of the source-side and drain-side junctions are heavily doped, resulting in source and drain regions that are aligned to the exposed lateral edges of the spacers. The drain-side spacer is removed and barrier atoms are forwarded through the exposed etch stop material and into a substrate/gate oxide interface region near the drain junction. The barrier atoms help reduce hot electron effects by blocking diffusion avenues of carriers (holes or electrons) from the drain-side junction into the gate oxide.
    • 提供了一种晶体管制造工艺,该方法得益于将栅极原子结合在晶体管的栅极氧化物附近在漏极附近的优点。 为了形成晶体管,首先在硅基衬底上生长栅氧化层。 然后在栅极氧化物层上沉积多晶硅层。 去除多晶硅层和氧化物层的部分以形成栅极导体和栅极氧化物,从而暴露衬底内的源极侧和漏极侧结。 进行LDD注入以轻轻地掺杂源极侧漏极和漏极侧结。 蚀刻停止材料可以形成在栅极导体的相对的侧壁表面,栅极导体的上表面以及源极侧和漏极侧结。 然后可以在位于栅极导体的侧壁表面上的蚀刻停止材料的横向邻近地形成间隔。 源侧和漏极侧结的未屏蔽部分被重掺杂,导致源极和漏极区域与间隔物的暴露的侧向边缘对准。 去除漏极侧隔离物,并且阻挡原子通过暴露的蚀刻停止材料并且进入到漏极结附近的衬底/栅极氧化物界面区域中。 阻挡原子有助于通过阻止载流子(空穴或电子)从漏极侧结到扩散通道到栅极氧化物中来减少热电子效应。