会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 61. 发明授权
    • Dual gate process using self-assembled molecular layer
    • 双栅工艺采用自组装分子层
    • US06365466B1
    • 2002-04-02
    • US09774939
    • 2001-01-31
    • Zoran Krivokapic
    • Zoran Krivokapic
    • H01L21336
    • B82Y30/00B82Y10/00H01L21/32139H01L21/823842
    • A method of forming dual gate structures on first and second portions, substrate includes: providing an insulative layer over the substrate; providing a first layer of material having a first work function with the first portion of the substrate; providing a second layer of material having a second work function different than the first work function over the second portion of the substrate; patterning a third layer of material over the first and second layers of material, whereby features of the third layer of material are provided over both the first and second portions of the substrate; providing a self-assembled molecular layer over at least a portion of the features, wherein the self-assembled molecular layer has regions of etch selectivity; and etching the self-assembled molecular layer at the regions of etch selectivity until gate structures are formed over the first and second portions of the substrate.
    • 在第一和第二部分上形成双栅极结构的方法,衬底包括:在衬底上提供绝缘层; 提供具有第一功函数的第一层材料与基底的第一部分; 在所述基板的第二部分上提供具有与所述第一功函数不同的第二功函数的第二层材料; 在第一和第二层材料上图案化第三层材料,由此在衬底的第一和第二部分上提供第三层材料的特征; 在特征的至少一部分上提供自组装分子层,其中所述自组装分子层具有蚀刻选择性的区域; 以及在蚀刻选择性区域刻蚀自组装分子层,直到在该衬底的第一和第二部分上形成栅极结构。
    • 62. 发明授权
    • Optimization of logic gates with criss-cross implants to form asymmetric channel regions
    • 优化具有十字交叉植入物的逻辑门以形成不对称沟道区域
    • US06320236B1
    • 2001-11-20
    • US09413737
    • 1999-10-06
    • Zoran KrivokapicOgnjen Milic
    • Zoran KrivokapicOgnjen Milic
    • H01L2976
    • H01L29/66659H01L21/26586H01L21/823412
    • An integrated semiconductor logic gate apparatus having optimized asymmetric channel regions and method for fabricating the apparatus is disclosed. The fabrication process includes ion-implanting the drain side of the channel to produce asymmetric channels on the gate transistors by using a criss-cross form of ion implantation. The criss-cross ion-implantation is performed after formation of the multiple gate stacks and is facilitated by a patterned photoresist mask that leaves an open, unprotected region above adjacent gate stacks through which the ion-implantation is performed. The criss-cross ion-implantation includes two tilt angles that are determined by tangent expressions that factor the height of the photoresist mask, the width of the unprotected opening over pairs of gate stacks and the width of the channel regions, including a distance relating to the point where the source/drain potential barrier is a minimum beneath the overlying gate stack. Adjacent gate stacks can have asymmetric channels with the same dopant concentration, or may be fabricated having different concentrations by varying the height of the photoresist mask to achieve a wider ion-implantation beam and thus form a higher dopant concentration on the target channel region. The optimized gates with higher dopant concentration improves off-state leakage current (10−8 amps/micron), but reduce the gate speed. The gates may also be optimized for gate speed and power consumption by producing uniformly doped asymmetric gates (20-50 pico-second fall time delays being achievable).
    • 公开了一种具有优化的非对称沟道区域的集成半导体逻辑门装置及其制造方法。 制造工艺包括离子注入通道的漏极侧,通过使用十字交叉形式的离子注入在栅极晶体管上产生非对称沟道。 十字交叉离子注入在形成多个栅极堆叠之后进行,并且通过图案化的光致抗蚀剂掩模来实现,该图案化的光刻胶掩模在相邻的栅极堆叠之上留下开放的未受保护的区域,通过其进行离子注入。 十字交叉离子注入包括由影响光致抗蚀剂掩模的高度的切线确定的两个倾斜角,栅极堆叠对上的未保护开口的宽度和沟道区域的宽度,包括与 源极/漏极势垒在覆盖栅极堆叠下方最小的点。 相邻的栅极堆叠可以具有相同的掺杂剂浓度的不对称沟道,或者可以通过改变光致抗蚀剂掩模的高度来制造具有不同的浓度,以实现较宽的离子注入束并因此在目标沟道区上形成更高的掺杂剂浓度。 具有较高掺杂浓度的优化栅极可提高截止状态下的漏电流(10-8安培/微米),但降低栅极速度。 也可以通过产生均匀掺杂的非对称栅极(20-50微微秒的下降时间延迟可实现)来对栅极速度和功耗进行优化。
    • 63. 发明授权
    • Silicon based lateral tunneling memory cell
    • 基于硅的横向隧道存储单元
    • US06294412B1
    • 2001-09-25
    • US09591382
    • 2000-06-09
    • Zoran Krivokapic
    • Zoran Krivokapic
    • H01L2100
    • B82Y10/00H01L27/11H01L27/1203Y10S438/979
    • An SRAM memory cell device is provide having a single transistor and a single RTD latch structure. The single transistor and RTD latch structure are formed on a very thin silicon layer, typically in the range of 250 to 300 Å thick, allowing for increased memory cell density over a given area. The RTD latch structure is a lateral RTD device, such that the outer contacting regions, the tunneling barriers and the central quantum well are formed side-by-side as opposed to being stacked on top of one another. This allows for formation of the memory cell device on very thin silicon layers. The layers can then be stacked to form memory devices for use with computers and the like. The memory device can be formed employing silicon-on-insulator (SOI) technology to take advantage of SOI device characteristics.
    • 提供具有单个晶体管和单个RTD锁存器结构的SRAM存储器单元器件。 单个晶体管和RTD锁存结构形成在非常薄的硅层上,通常在250至大约厚的范围内,允许在给定区域上增加存储单元密度。 RTD闩锁结构是横向RTD装置,使得外部接触区域,隧道势垒和中心量子阱彼此并排地形成,而不是彼此堆叠。 这允许在非常薄的硅层上形成存储单元器件。 然后可以堆叠层以形成用于计算机等的存储器件。 可以使用绝缘体上硅(SOI)技术形成存储器件以利用SOI器件特性。
    • 67. 发明授权
    • Adaptively controlled, self-aligned, short channel device and method for
manufacturing same
    • 自适应控制,自对准,短通道装置及其制造方法
    • US5879998A
    • 1999-03-09
    • US890388
    • 1997-07-09
    • Zoran Krivokapic
    • Zoran Krivokapic
    • H01L21/28H01L21/336H01L21/762H01L21/768H01L29/08H01L29/10H01L29/417H01L29/423
    • H01L29/66553H01L21/28114H01L21/28123H01L21/76224H01L21/76895H01L29/0847H01L29/1083H01L29/41775H01L29/41783H01L29/42376H01L29/66545H01L29/6656H01L29/66575H01L29/66628H01L29/665H01L29/66537
    • A short channel semiconductor device having source and drain regions in a substrate and a gate region on the top surface of the substrate between the source and drain regions is disclosed. In one embodiment, the method comprises: forming a device area in the silicon by forming a pattern stack, and forming pattern spacers adjacent to the pattern stack; forming a trench isolation about the pattern stack; removing the pattern spacers; depositing an epitaxial layer over the trench oxide and adjacent to the pattern stack; removing the pattern stack; and forming adaptively controlled spacers in the region to control said short channel length of the device.The apparatus of the present invention comprises: a semiconductor substrate; a source region and a drain region formed in the substrate; a gate region, comprising a first and a second oxide regions, a first control spacer and a second control spacer positioned above the substrate and adjacent to the first and second oxide regions, respectively, and a polysilicon layer positioned between the spacers; and an epitaxial layer, adjacent to the source and drain region and surrounding said first and second spacers.
    • 公开了一种短沟道半导体器件,其在衬底中具有源极和漏极区域以及在源极和漏极区域之间的衬底顶表面上的栅极区域。 在一个实施例中,该方法包括:通过形成图案叠层在硅中形成器件区域,以及形成邻近图案层叠的图案间隔物; 围绕图案堆叠形成沟槽隔离; 去除图案间隔物; 在所述沟槽氧化物上沉积外延层并且邻近所述图案层叠; 去除图案堆栈; 以及在所述区域中形成自适应控制的间隔物以控制所述装置的所述短通道长度。 本发明的装置包括:半导体衬底; 形成在所述基板中的源极区域和漏极区域; 包括第一和第二氧化物区域的栅极区域,分别位于衬底上方并分别邻近第一和第二氧化物区域的第一控制间隔物和第二控制间隔物以及位于间隔物之间​​的多晶硅层; 以及与源极和漏极区相邻并且围绕所述第一和第二间隔物的外延层。