会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 65. 发明授权
    • Method of forming stacked gate for flash memories
    • 形成闪存存储堆叠栅的方法
    • US06677224B2
    • 2004-01-13
    • US09976823
    • 2001-10-12
    • Horng-Huei Tseng
    • Horng-Huei Tseng
    • H01L213205
    • H01L27/11521H01L21/76224H01L27/115
    • The method of the present invention includes the steps of forming doped regions in the semiconductor substrate. A pad oxide layer is formed on the semiconductor substrate. A masking layer is formed on the pad oxide layer. A masking layer, the pad oxide layer and the semiconductor substrate are patterned to form a trench therein. A gap-filling material is refilled into the trench and over the semiconductor substrate. A portion of the gap-filling material is removed to an upper surface of the masking layer. Next step is to remove the masking layer. A first conductive layer is formed along the surface of the substrate, then removing a portion of the first conductive layer to expose an upper surface of the gap-filling material. An inter polysilicon dielectric layer is formed on the first conductive layer and a second conductive layer is formed on the inter polysilicon dielectric layer.
    • 本发明的方法包括在半导体衬底中形成掺杂区的步骤。 在半导体衬底上形成衬垫氧化物层。 在衬垫氧化物层上形成掩模层。 掩模层,衬垫氧化物层和半导体衬底被图案化以在其中形成沟槽。 间隙填充材料被再填充到沟槽中并在半导体衬底上。 间隙填充材料的一部分被去除到掩模层的上表面。 下一步是去除掩模层。 沿着衬底的表面形成第一导电层,然后去除第一导电层的一部分以暴露间隙填充材料的上表面。 在第一导电层上形成多晶硅间介质层,在多晶硅间介质层上形成第二导电层。
    • 66. 发明授权
    • Nonvolatile memory device with reduced floating gate and increased coupling ratio and manufacturing method thereof
    • 具有减小的浮动栅极和增加耦合比的非易失性存储器件及其制造方法
    • US06589840B2
    • 2003-07-08
    • US09891408
    • 2001-06-27
    • Horng-Huei Tseng
    • Horng-Huei Tseng
    • H01L21336
    • H01L27/11521H01L27/115H01L29/42324Y10S257/90
    • A nonvolatile memory device with a reduced size floating gate and an increased coupling ratio is disclosed. The nonvolatile memory device includes two isolation structures protruding above a semiconductor substrate. Two dielectric spacers are disposed on a pair of opposing sidewalls of the two isolation structures. The two dielectric spacers are spaced from one another at a distance that defines a gate width which is beyond lithography limit. A tunnel dielectric and a floating gate are provided on substrate and confined between the two dielectric spacers. The floating gate has a smaller bottom surface area relative to its top surface area and has a surface substantially coplanar with a surface of the isolation structures. On the coplanar surface, an inter-gate dielectric and a control gate are provided. Optionally, a lightly doped region is provided beside the floating gate 118 and within the substrate. A manufacturing method for forming such memory device is also disclosed.
    • 公开了一种具有减小尺寸的浮动栅极和增加的耦合比的非易失性存储器件。 非易失性存储器件包括在半导体衬底上突出的两个隔离结构。 两个电介质间隔物设置在两个隔离结构的一对相对的侧壁上。 两个电介质间隔物以限定超出光刻极限的栅极宽度的距离彼此间隔开。 隧道电介质和浮栅设置在衬底上并被限制在两个电介质间隔物之间​​。 浮动栅极相对于其顶表面区域具有较小的底表面积,并且具有与隔离结构的表面基本上共面的表面。 在共面上设置栅极间电介质和控制栅极。 可选地,在浮置栅极118旁边和衬底内设置轻掺杂区域。 还公开了一种用于形成这种存储器件的制造方法。
    • 68. 发明授权
    • Method of making a single transistor non-volatile memory device
    • 制造单晶体管非易失性存储器件的方法
    • US06495420B2
    • 2002-12-17
    • US09782238
    • 2001-02-12
    • Horng-Huei Tseng
    • Horng-Huei Tseng
    • H01L21336
    • H01L29/42324H01L21/28273
    • The present invention includes forming a first oxide layer as a sacrificial dielectric layer on a semiconductor substrate. A nitride layer is formed on the sacrificial dielectric layer. Then, the sacrificial dielectric layer and the nitride layer are patterned to form an opening. Next, a second oxide layer is formed on the nitride layer and along a surface of the opening. Side wall spacers are created by etching. Then, a gate dielectric layer is formed on the exposed semiconductor substrate. A first polysilicon layer is deposited on the nitride layer. Subsequently, the first polysilicon layer is polished by CMP, followed by removing the nitride layer, the spacers and the sacrificial dielectric layer. A tunneling dielectric layer and a control gate are respectively formed on a surface of the floating gate.
    • 本发明包括在半导体衬底上形成作为牺牲电介质层的第一氧化物层。 在牺牲电介质层上形成氮化物层。 然后,将牺牲介电层和氮化物层图案化以形成开口。 接下来,在氮化物层上并且沿着开口的表面形成第二氧化物层。 通过蚀刻产生侧壁间隔物。 然后,在暴露的半导体衬底上形成栅介质层。 第一多晶硅层沉积在氮化物层上。 随后,通过CMP抛光第一多晶硅层,然后除去氮化物层,间隔物和牺牲介电层。 隧道电介质层和控制栅分别形成在浮动栅极的表面上。
    • 69. 发明授权
    • Method of forming a metal silicide layer
    • 形成金属硅化物层的方法
    • US06455428B1
    • 2002-09-24
    • US09696080
    • 2000-10-26
    • Horng-Huei Tseng
    • Horng-Huei Tseng
    • H01L21302
    • H01L21/76802H01L21/31058H01L21/76814
    • A process for forming a metal silicide layer on the surface of a conductive region in a semiconductor substrate, located at the bottom of a contact hole formed in an insulator layer, has been developed. The process features the removal of a photoresist shape, used to define the contact hole, via removal procedures that avoid the formation of a substoichiometric, silicon oxide, native oxide layer, on the top surface of the conductive region. The removal of the contact hole defining photoresist shape is realized via a chemical mechanical polishing procedure, which results in no native oxide formation, or removal of the photoresist shape can be accomplished via a combination of chemical mechanical polishing and wet clean procedure, which will form a native oxide layer, however only comprised of easily removable stoichiometric silicon oxide. The inability to remove substoichiometric silicon oxide, formed from procedures such as plasma oxygen ashing, can deleteriously influence the formation of metal silicide layers on the surface of a conductive region.
    • 已经开发了在位于形成在绝缘体层中的接触孔的底部的半导体衬底的导电区域的表面上形成金属硅化物层的工艺。 该方法的特征在于通过去除程序去除用于限定接触孔的光致抗蚀剂形状,该方法避免了在导电区域的顶表面上形成亚化学计量的氧化硅自然氧化物层。 通过化学机械抛光程序实现了形成光刻胶形状的接触孔的去除,这导致没有自然氧化物形成,或者可以通过化学机械抛光和湿清洁程序的组合来实现光致抗蚀剂形状的去除,这将形成 天然氧化物层,然而仅由易于除去的化学计量的氧化硅组成。 不能除去由诸如等离子体氧灰化的过程形成的亚化学计量氧化硅可有害地影响导电区域表面上的金属硅化物层的形成。
    • 70. 发明授权
    • Method of forming a tunnel oxide layer of a non-volatile memory cell
    • 形成非易失性存储单元的隧道氧化物层的方法
    • US06395603B1
    • 2002-05-28
    • US09745334
    • 2000-12-20
    • Horng-Huei Tseng
    • Horng-Huei Tseng
    • H01L213105
    • H01L21/32135H01L21/28273H01L21/32105H01L21/32137Y10S438/964
    • A method of forming a tunnel oxide layer of a non-volatile memory cell is disclosed. First, a first dielectric layer and a second dielectric layer are formed on a semiconductor substrate. After patterning the second dielectric layer to form an opening, the semiconductor substrate is oxidized to form a non-tunnel oxide within the opening. After removing the second dielectric layer, source/drain regions are formed by performing an ion implantation process and an annealing process. After removing the first dielectric layer, an HSG layer with a plurality of HSG grains are formed on the source/drain regions. After that, the HSG layer is partially etched by HF vapor to enlarge a spacing between the HSG grains. Finally, the HSG layer is oxidized to form the tunnel oxide layer.
    • 公开了一种形成非易失性存储单元的隧道氧化物层的方法。 首先,在半导体衬底上形成第一电介质层和第二电介质层。 在图案化第二电介质层以形成开口之后,半导体衬底被氧化以在开口内形成非隧道氧化物。 在去除第二电介质层之后,通过进行离子注入工艺和退火工艺形成源极/漏极区域。 在去除第一电介质层之后,在源/漏区上形成具有多个HSG晶粒的HSG层。 之后,HSG层被HF蒸汽部分蚀刻,以扩大HSG晶粒之间的间距。 最后,HSG层被氧化形成隧道氧化层。