会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 63. 发明申请
    • METHODS FOR FABRICATING A SPLIT CHARGE STORAGE NODE SEMICONDUCTOR MEMORY
    • 用于制造分离充电储存节点半导体存储器的方法
    • US20080153222A1
    • 2008-06-26
    • US11614048
    • 2006-12-20
    • Chungho LeeAshot Melik-MartirosianHiroyuki KinoshitaKuo-Tung ChangSugimo RinjiWei Zheng
    • Chungho LeeAshot Melik-MartirosianHiroyuki KinoshitaKuo-Tung ChangSugimo RinjiWei Zheng
    • H01L21/336
    • H01L21/28282H01L29/792
    • Methods are provided for fabricating a split charge storage node semiconductor memory device. In accordance with one embodiment the method comprises the steps of forming a gate insulator layer having a first physical thickness and a first effective oxide thickness on a semiconductor substrate and forming a control gate electrode having a first edge and a second edge overlying the gate insulator layer. The gate insulator layer is etched to form first and second undercut regions at the edges of the control gate electrode, the first and second undercut region each exposing a portion of the semiconductor substrate and an underside portion of the control gate electrode. First and second charge storage nodes are formed in the undercut regions, each of the charge storage nodes comprising an oxide-storage material-oxide structure having a physical thickness substantially equal to the first physical thickness and an effective oxide thickness less than the first effective oxide thickness.
    • 提供了用于制造分离电荷存储节点半导体存储器件的方法。 根据一个实施例,该方法包括以下步骤:在半导体衬底上形成具有第一物理厚度和第一有效氧化物厚度的栅极绝缘体层,并形成具有覆盖栅极绝缘体层的第一边缘和第二边缘的控制栅极电极 。 栅极绝缘体层被蚀刻以在控制栅电极的边缘处形成第一和第二底切区域,第一和第二底切区域各自暴露半导体衬底的一部分和控制栅电极的下侧部分。 第一和第二电荷存储节点形成在底切区域中,每个电荷存储节点包括具有基本上等于第一物理厚度的物理厚度和小于第一有效氧化物的有效氧化物厚度的氧化物存储材料 - 氧化物结构 厚度。
    • 68. 发明授权
    • Method of building an EPROM cell without drain disturb and reduced
select gate resistance
    • 构建EPROM单元而无漏极干扰和降低选择栅极电阻的方法
    • US5981340A
    • 1999-11-09
    • US939397
    • 1997-09-29
    • Kuo-Tung ChangErwin J. PrinzCraig T. Swift
    • Kuo-Tung ChangErwin J. PrinzCraig T. Swift
    • G11C16/04H01L27/115H01L21/336
    • H01L27/115G11C16/0433
    • A semiconductor device (70) includes a memory cell having a select transistor (67) and a storage transistor (65) having a relatively uniform tunnel dielectric thickness under both the floating gate (651) of the storage transistor and the select gate (671) of the select transistor (67). The select transistor (67) is adjacent to the drain region (68) for the memory cell to nearly eliminate a drain disturb problem. During programming, the control gate (652) is at a negative potential, and the drain region (68) is at a positive potential. The drain potential is sufficiently low to not degrade the tunnel dielectric layer (42) of the select transistor (67). During erase, a positive potential is applied to the control gate (652). The relatively uniform tunnel dielectric layer (42) thickness of the select transistor (67) allows for a faster operating device by increasing the read current of the memory device.
    • 半导体器件(70)包括具有在存储晶体管的浮动栅极(651)和选择栅极(671)两者下具有相对均匀的隧道电介质厚度的选择晶体管(67)和存储晶体管(65)的存储单元, 的选择晶体管(67)。 选择晶体管(67)与用于存储单元的漏极区域(68)相邻,几乎消除了漏极干扰问题。 在编程期间,控制栅极(652)处于负电位,漏区(68)处于正电位。 漏极电位足够低以不降低选择晶体管(67)的隧道介电层(42)。 在擦除期间,向控制栅极施加正电位(652)。 选择晶体管(67)的相对均匀的隧道介电层(42)的厚度通过增加存储器件的读取电流而允许更快的操作器件。
    • 69. 发明授权
    • Fabrication process for a 1-transistor EEPROM memory device capable of
low-voltage operation
    • 能够进行低电压工作的1晶体管EEPROM存储器件的制造工艺
    • US5585293A
    • 1996-12-17
    • US446133
    • 1995-05-22
    • Umesh SharmaKuo-Tung Chang
    • Umesh SharmaKuo-Tung Chang
    • H01L21/8247
    • H01L27/11517
    • A method for fabricating a 1-transistor EEPROM device, which can be programmed and erased by Fowler-Nordheim tunneling includes the formation of a memory gate (28) overlying a tunneling region (22), and aligning source (32) and drain (34) regions in a semiconductor substrate (10), such that a vertically oriented electric field (46) is created in the tunneling region (22). The memory gate (28) is coupled to a contact region (30) by a connecting portion (31). A select gate (14) controls a portion of the channel region in the substrate (10) adjacent to the tunneling region (22). The EEPROM device is programmed by applying a voltage of a first polarity memory gate (28), while applying a voltage of a second polarity to the source region (32), the drain region (34), and to the substrate (10). Under the applied voltages, charge carriers tunnel through a tunnel oxide layer (40) and into a silicon nitride layer (42), located intermediate to the memory gate (28) and the tunnel region (22). To erase the EEPROM device, the polarity of the applied voltages is reversed, and charge carriers of an opposite conductivity type tunnel into the silicon nitride layer (42).
    • 可以由Fowler-Nordheim隧道编程和擦除的用于制造1-晶体管EEPROM器件的方法包括形成覆盖隧道区域(22)的存储栅极(28),以及对准源极(32)和漏极(34) )区域,使得在隧道区域(22)中产生垂直取向的电场(46)。 存储器栅极(28)通过连接部分(31)耦合到接触区域(30)。 选择栅极(14)控制与隧道区域(22)相邻的衬底(10)中的沟道区域的一部分。 通过施加第一极性存储栅极(28)的电压,同时向源极区域(32),漏极区域(34)和衬底(10)施加第二极性的电压来对EEPROM器件进行编程。 在施加的电压下,电荷载流子穿过隧道氧化物层(40)并且位于位于存储器栅极(28)和隧道区域(22)中间的氮化硅层(42)中。 为了擦除EEPROM器件,施加的电压的极性反转,并且反向导电型隧道的电荷载流子进入氮化硅层(42)。