会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 52. 发明授权
    • Trench transistor with insulative spacers
    • 带绝缘垫片的沟槽晶体管
    • US06201278B1
    • 2001-03-13
    • US09028896
    • 1998-02-24
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • H01L31062
    • H01L29/7834H01L29/66621
    • An IGFET with a gate electrode and insulative spacers in a trench is disclosed. The IGFET includes a trench with opposing sidewalls and a bottom surface in a semiconductor substrate, a gate insulator on the bottom surface, a gate electrode on the gate insulator, and insulative spacers between the gate electrode and the sidewalls. A method of forming the IGFET includes implanting a doped layer into the substrate, etching completely through the doped layer and partially through the substrate to form the trench and split the doped layer into source and drain regions, depositing a blanket layer of insulative spacer material over the substrate and applying an anisotropic etch to form the insulative spacers on the sidewalls, growing the gate insulator on a central portion of the bottom surface between the insulative spacers, depositing a gate electrode material on the gate insulator and the insulative spacers, polishing the gate electrode material so that the gate electrode is substantially aligned with a top surface of the substrate, and applying a high-temperature anneal to diffuse the source and drain regions beneath the bottom surface, thereby forming a source and drain with channel junctions substantially aligned with the gate electrode. Advantageously, the channel length is significantly smaller than the trench length.
    • 公开了一种具有栅电极和沟槽中的绝缘间隔物的IGFET。 IGFET包括具有相对侧壁的沟槽和半导体衬底中的底表面,底表面上的栅极绝缘体,栅极绝缘体上的栅极电极以及栅电极和侧壁之间的绝缘间隔物。 形成IGFET的方法包括将掺杂层注入到衬底中,通过掺杂层完全蚀刻并部分地穿过衬底以形成沟槽并将掺杂层分为源极和漏极区,将绝缘隔离材料的覆盖层沉积在 基板并施加各向异性蚀刻以在侧壁上形成绝缘间隔物,在绝缘隔离物之间的底表面的中心部分上生长栅极绝缘体,在栅极绝缘体上沉积栅电极材料和绝缘间隔物,抛光栅极 电极材料,使得栅电极基本上与衬底的顶表面对准,并施加高温退火以扩散底表面下面的源极和漏极区域,从而形成源极和漏极,其通道结基本上与 栅电极。 有利地,沟道长度明显小于沟槽长度。
    • 54. 发明授权
    • Method of forming trench transistor with insulative spacers
    • 用绝缘间隔物形成沟槽晶体管的方法
    • US6100146A
    • 2000-08-08
    • US739595
    • 1996-10-30
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • H01L21/336H01L29/423H01L29/78
    • H01L29/7834H01L29/66621
    • An IGFET with a gate electrode and insulative spacers in a trench is disclosed. The IGFET includes a trench with opposing sidewalls and a bottom surface in a semiconductor substrate, a gate insulator on the bottom surface, a gate electrode on the gate insulator, and insulative spacers between the gate electrode and the sidewalls. A method of forming the IGFET includes implanting a doped layer into the substrate, etching completely through the doped layer and partially through the substrate to form the trench and split the doped layer into source and drain regions, depositing a blanket layer of insulative spacer material over the substrate and applying an anisotropic etch to form the insulative spacers on the sidewalls, growing the gate insulator on a central portion of the bottom surface between the insulative spacers, depositing a gate electrode material on the gate insulator and the insulative spacers, polishing the gate electrode material so that the gate electrode is substantially aligned with a top surface of the substrate, and applying a high-temperature anneal to diffuse the source and drain regions beneath the bottom surface, thereby forming a source and drain with channel junctions substantially aligned with the gate electrode. Advantageously, the channel length is significantly smaller than the trench length.
    • 公开了一种具有栅电极和沟槽中的绝缘间隔物的IGFET。 IGFET包括具有相对侧壁的沟槽和半导体衬底中的底表面,底表面上的栅极绝缘体,栅极绝缘体上的栅极电极以及栅电极和侧壁之间的绝缘间隔物。 形成IGFET的方法包括将掺杂层注入到衬底中,通过掺杂层完全蚀刻并部分地穿过衬底以形成沟槽并将掺杂层分为源极和漏极区,将绝缘隔离材料的覆盖层沉积在 基板并施加各向异性蚀刻以在侧壁上形成绝缘间隔物,在绝缘隔离物之间的底表面的中心部分上生长栅极绝缘体,在栅极绝缘体上沉积栅电极材料和绝缘间隔物,抛光栅极 电极材料,使得栅电极基本上与衬底的顶表面对准,并施加高温退火以扩散底表面下面的源极和漏极区域,从而形成源极和漏极,其通道结基本上与 栅电极。 有利地,沟道长度明显小于沟槽长度。
    • 55. 发明授权
    • Ion implantation into a gate electrode layer using an implant profile
displacement layer
    • 使用植入物轮廓位移层将离子注入到栅极电极层中
    • US06080629A
    • 2000-06-27
    • US837579
    • 1997-04-21
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • H01L21/28H01L21/8238H01L21/336
    • H01L21/823842H01L21/28035
    • A method for implanting a dopant into a thin gate electrode layer includes forming a displacement layer on the gate electrode layer to form a combined displacement/gate electrode layer, and implanting the dopant into the combined layer. The implanted dopant profile may substantially reside entirely within the gate electrode layer, or may substantially reside partially within the gate electrode layer and partially within the displacement layer. If the displacement layer is ultimately removed, at least some portion of the implanted dopant remains within the gate electrode layer. The gate electrode layer may be implanted before or after patterning and etching the gate electrode layer to define gate electrodes. Moreover, two different selective implants may be used to define separate regions of differing dopant concentration, such as P-type polysilicon and N-type polysilicon regions. Each region may utilize separate displacement layer thicknesses, which allows dopants of different atomic mass to use similar implant energies. A higher implant energy may be used to dope a gate electrode layer which is much thinner than normal range statistics require, without implant penetration into underlying structures.
    • 将掺杂剂注入到薄栅电极层中的方法包括在栅电极层上形成位移层以形成组合位移/栅极电极层,并将掺杂剂注入到组合层中。 注入的掺杂剂分布基本上完全位于栅极电极层内,或者基本上部分地位于栅极电极层内部分地位于位移层内。 如果位移层最终被去除,则注入的掺杂剂的至少一部分保留在栅电极层内。 栅极电极层可以在图案化之前或之后被注入,并蚀刻栅电极层以限定栅电极。 此外,可以使用两种不同的选择性植入来限定不同掺杂剂浓度的分开的区域,例如P型多晶硅和N型多晶硅区域。 每个区域可以利用单独的位移层厚度,这允许不同原子质量的掺杂剂使用类似的注入能量。 可以使用较高的注入能量来掺杂比正常范围统计要求更薄的栅极电极层,而不会使植入物渗入下面的结构。
    • 57. 发明授权
    • Semiconductor gate conductor with a substantially uniform doping profile
having minimal susceptibility to dopant penetration into the underlying
gate dielectric
    • 具有基本上均匀的掺杂分布的半导体栅极导体对掺杂剂渗透到下面的栅极电介质中具有最小的敏感性
    • US6043544A
    • 2000-03-28
    • US140202
    • 1998-08-26
    • Mark W. MichaelRobert Dawson
    • Mark W. MichaelRobert Dawson
    • H01L21/28H01L21/8238H01L29/76
    • H01L21/28035H01L21/823842
    • A semiconductor fabrication process is presented which optimizes the position of impurities within a gate conductor a the source/drain straddling the gate conductor. Optimal positioning is achieved by using separate implants of different energies depending upon whether the gate conductor connotes a PMOS or NMOS transistor. A layer of polysilicon used to form the gate conductor is doped before patterning so that the source and drain regions are protected. A low energy implant is performed when implanting a fast diffuser such as boron, and a high energy implant is performed when implanting a slow diffuser like arsenic. This enables optimum positioning of the impurities throughout the gate conductor cross-section after heat cycles are applied. Fast diffusers are initially placed far from the bottom surface of the polysilicon, and diffuse near the bottom surface of the polysilicon when heat is applied. Slow diffusers are initially placed closer to the bottom surface of the polysilicon, since they do not diffuse as readily. The source and drain regions are implanted using a very low energy implant, separately from the polysilicon implants, to produce a desirable shallow source and drain region within the semiconductor substrate.
    • 提出了一种半导体制造工艺,其优化栅极导体内杂质的位置,栅极导体中跨越栅极导体的源极/漏极。 通过使用不同能量的单独注入来取决于栅极导体是指PMOS还是NMOS晶体管来实现最佳定位。 用于形成栅极导体的多晶硅层在图案化之前被掺杂,使得源极和漏极区域受到保护。 当植入诸如硼的快速扩散器时执行低能量注入,并且当植入像砷这样的慢扩散器时执行高能量注入。 这使得在施加热循环之后,杂质在整个栅极导体横截面中的最佳定位。 最初放置快速扩散器远离多晶硅的底表面,并在加热时在多晶硅的底表面附近扩散。 缓慢扩散器最初放置得更靠近多晶硅的底表面,因为它们不会容易地扩散。 使用与多晶硅植入物分开的非常低能量的注入来注入源极区和漏极区,以在半导体衬底内产生期望的浅源极和漏极区。
    • 59. 发明授权
    • Method of making N-channel and P-channel IGFETs with different gate
thicknesses and spacer widths
    • 制造具有不同栅极厚度和间隔宽度的N沟道和P沟道IGFET的方法
    • US5963803A
    • 1999-10-05
    • US17254
    • 1998-02-02
    • Robert DawsonMark W. MichaelCharles E. May
    • Robert DawsonMark W. MichaelCharles E. May
    • H01L21/8238H01L27/092H01L27/02
    • H01L21/82385H01L21/823864H01L27/0922
    • A method of making N-channel and P-channel IGFETs with different gate thicknesses and spacer widths is disclosed. The method includes providing a semiconductor substrate with a first active region of a first conductivity type and a second active region of a second conductivity type, forming a first gate over the first active region and a second gate over the second active region, wherein the second gate has a substantially greater thickness than the first gate, forming first spacers in close proximity to opposing sidewalls of the first gate and second spacers in close proximity to opposing sidewalls of the second gate, wherein the second spacers have a substantially greater width than the first spacers due to the second gate having a substantially greater thickness than the first gate, and forming a first source and a first drain of the second conductivity type in the first active region and a second source and a second drain of the first conductivity type in the second active region. Preferably, the N-channel device is formed in the first active region, the P-channel device is formed in the second active region, and the N-channel and P-channel devices include lightly and heavily doped source and drain regions. In this manner, the relatively thick gate for the P-channel device reduces boron penetration, and the relatively wide spacers for the P-channel device offset the rapid diffusion of boron in the heavily doped source and drain regions of the P-channel device during high temperature processing so that the lightly doped source and drain regions for the N-channel and P-channel devices have the desired sizes.
    • 公开了一种制造具有不同栅极厚度和间隔物宽度的N沟道和P沟道IGFET的方法。 该方法包括提供具有第一导电类型的第一有源区和第二导电类型的第二有源区的半导体衬底,在第一有源区上形成第一栅极,在第二有源区上形成第二栅极,其中第二有源区 栅极具有比第一栅极大得多的厚度,在第二栅极的相对侧壁附近形成第一间隔物,其紧邻第一栅极的相对侧壁和第二间隔物,其中第二间隔物具有比第一栅极大得多的宽度 由于第二栅极具有比第一栅极大得多的厚度的间隔物,以及在第一有源区中形成第二导电类型的第一源极和第一漏极,以及在第一有源区中形成第一导电类型的第二源极和第二漏极 第二活跃区域。 优选地,N沟道器件形成在第一有源区中,P沟道器件形成在第二有源区中,并且N沟道和P沟道器件包括轻掺杂和重掺杂的源极和漏极区。 以这种方式,用于P沟道器件的相对较厚的栅极减少硼渗透,并且用于P沟道器件的相对较宽的间隔物抵消P沟道器件的重掺杂源极和漏极区域中硼的快速扩散, 高温处理使得用于N沟道和P沟道器件的轻掺杂源极和漏极区域具有期望的尺寸。