会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明申请
    • Measuring system
    • 测量系统
    • US20050225278A1
    • 2005-10-13
    • US11100486
    • 2005-04-07
    • Kazunori BanMakoto Yamada
    • Kazunori BanMakoto Yamada
    • G01B11/00B25J9/16G01B11/26G05B19/401B25J9/18G05B19/19
    • B25J9/1692G05B2219/39008G05B2219/39394G05B2219/40607
    • The image of a tool center point (31) caught by a camera (light-receiving device) 4 from two initial positions is moved to a predetermined point, by a predetermined point moving process, at the center of a light-receiving surface thereby to acquire robot positions (Qf1, Qf2), based on which the direction of the view line (40) is determined. Next, the robot is moved to the position where the position (Qf1) is rotated by 180 degrees around the Z axis of a coordinate system (Σv1) thereby to execute the predetermined point moving process. After rotational movement, a robot position (Qf3) is acquired. The midpoint between the position (Qf1) and the position (Qf3) is determined as the origin of a coordinate system (Σv2). Using the position and the posture of the view line (40), the position of the tool center point (31) is determined. Thus, the position of the tool center point with respect to the tool mounting surface can be determined using a fixed light-receiving device. By additionally measuring two points at known relative positions from the tool center point, the tool posture as well as the position of the tool center point can be determined.
    • 由相机(光接收装置)4从两个初始位置捕获的工具中心点(31)的图像在预定点移动过程中移动到预定点,在光接收表面的中心,从而 获取机器人位置(Qf 1,Qf 2),基于该位置确定视线(40)的方向。 接下来,机器人移动到位置(Qf 1)围绕坐标系(Sigmav 1)的Z轴旋转180度的位置,从而执行预定点移动处理。 在旋转运动之后,获取机器人位置(Qf 3)。 位置(Qf 1)和位置(Qf 3)之间的中点被确定为坐标系的原点(Sigmav 2)。 使用视线(40)的位置和姿势,确定工具中心点(31)的位置。 因此,可以使用固定的光接收装置来确定工具中心点相对于工具安装面的位置。 通过在工具中心点的已知相对位置附加测量两个点,可以确定刀具姿势以及刀具中心点的位置。
    • 53. 发明授权
    • Hand and handling robot
    • 手和处理机器人
    • US07734376B2
    • 2010-06-08
    • US11365601
    • 2006-03-02
    • Atsushi WatanabeKazunori BanTaro ArimatsuMasaru OdaYoshinori OchiishiHiroaki Kubota
    • Atsushi WatanabeKazunori BanTaro ArimatsuMasaru OdaYoshinori OchiishiHiroaki Kubota
    • G06F19/00
    • B25J15/00
    • A hand as an end effector. The hand includes a base, a hook element associated with the base and capable of hooking and lifting an object, a holding element associated with the base and cooperating with the hook element to hold the object therebetween, and a drive section causing a relative movement between the hook element and the holding element. For example, the hook element is arranged movably in a direction toward and away from the holding element on the base, and the drive section drives the hook element. Alternatively, the holding element is arranged movably in a direction toward and away from the hook element on the base, and the drive section drives the holding element. A handling robot includes an arm and the above-described hand attached to the arm.
    • 一只手作为末端执行器。 手包括基部,与基部相关联并能够钩住和提起物体的钩元件,与基部相关联并与钩元件配合以保持物体的保持元件,以及驱动部分,其引起相对运动 钩元件和保持元件。 例如,钩元件能够在朝向和远离基座上的保持元件的方向上移动地布置,并且驱动部分驱动钩元件。 或者,保持元件沿着朝向和远离基座上的钩元件的方向可移动地布置,并且驱动部分驱动保持元件。 处理机器人包括臂和附接到臂的上述手。
    • 54. 发明申请
    • Measuring system
    • 测量系统
    • US20050159842A1
    • 2005-07-21
    • US11034724
    • 2005-01-14
    • Kazunori BanMakoto Yamada
    • Kazunori BanMakoto Yamada
    • B25J13/08B25J19/02G01B11/00G01B11/26G01B21/04G06F19/00
    • G01B21/042B25J19/023G01B11/005G05B2219/37555
    • A measuring system which can easily measure a three-dimensional position of a target to be measured using a light receiving device mounted to a manipulator of a robot. When the manipulator is positioned at a first position, a moving process for moving an image of the target imaged by the light receiving device or a camera to a center of a light receiving surface of the camera is executed. Next, the manipulator positioned at the first position is moved, without changing the orientation of the camera, to a second position where the distance between the camera and the target is different to that at the first position. After that, the moving process is executed again. Based on the position of the manipulator after the process, the orientation of a coordinate system Σv1 representing the direction of a visual line is calculated. Then, the manipulator is rotated by 180 degree about Z-axis of the coordinate system Σv1 and the moving process is executed again. A middle point of the positions of coordinate system Σv1 before and after movement of the manipulator is determined as an origin of a coordinate system Σv2 representing the orientation and the position of the visual line. The manipulator is inclined relative to Y-axis of the coordinate system Σv2 and the moving process is executed again, so as to calculate the three-dimensional position of the target.
    • 一种测量系统,其可以使用安装到机器人的操纵器的光接收装置容易地测量要测量的目标的三维位置。 当操纵器位于第一位置时,执行用于将由光接收装置或照相机成像的目标的图像移动到相机的光接收表面的中心的移动处理。 接下来,将位于第一位置的操纵器移动到相机与目标之间的距离与第一位置不同的第二位置,而不改变相机的方位。 之后,再次执行移动处理。 基于处理后的操纵器的位置,计算表示视线方向的坐标系Sigmav 1的取向。 然后,将机械手绕坐标系Sigmav 1的Z轴旋转180度,再次执行移动处理。 将坐标系Sigmav 1在操纵器移动之前和之后的位置的中点确定为表示视线的取向和位置的坐标系Sigmav 2的原点。 操纵器相对于坐标系Sigmav 2的Y轴倾斜,再次执行移动处理,以计算目标的三维位置。
    • 55. 发明授权
    • Robot control device having operation route simulation function
    • 机器人控制装置具有操作路线模拟功能
    • US06463358B1
    • 2002-10-08
    • US09117140
    • 1999-01-07
    • Atsushi WatanabeRyuichi HaraKazunori Ban
    • Atsushi WatanabeRyuichi HaraKazunori Ban
    • G06F1900
    • B25J9/1674G05B19/427G05B2219/36419G05B2219/40311G05B2219/40523
    • A robot controller capable of finding a mistaught path and avoiding dangers involved in a real motion of a robot without using an off-line simulation system. An operation program for confirming safety is played back with the robot control system arranged such that a simulation function is on, a real motion is off, and comparison processing is on. When a played-back path designated by each block is compared with a reference path using data on interpolation points, an interpolation point ordinal index i is incremented by “1” (K1), an interpolation point on a reference path Tref(i) is read (K2) and compared with a corresponding interpolation point on the played-back path T(i). An index of distance d(i) and a distance evaluation index &Dgr;d(i) are calculated (K3, K4), and tool-tip orientation difference indices f(i) to h(i) and orientation-evaluation indices &Dgr;f(i) to &Dgr;h(i) are calculated (K5, K6). Based thereon, it is determined whether or not there is a path difference exceeding a reference value. The processing may be started with a real motion in an on-state, and the real motion of the robot may be nullified when a large path difference is found.
    • 一种机器人控制器,能够找到一个偏心的路径,避免在不使用离线仿真系统的情况下参与机器人的实际运动的危险。 通过布置使得模拟功能打开,实际运动关闭,比较处理打开的机器人控制系统来回放用于确认安全性的操作程序。 当使用每个块指定的回放路径与使用内插点的数据与参考路径进行比较时,内插点序数索引i增加“1”(K1),参考路径Tref(i)上的内插点为 读取(K2)并与回放路径T(i)上的相应内插点进行比较。 计算距离d(i)和距离评价指数DELTAd(i)的指标(K3,K4),并且工具尖端取向差分指数f(i)〜h(i)和取向评价指标DELTAf(i) 到DELTAh(i)被计算(K5,K6)。 基于此,确定是否存在超过参考值的路径差异。 该处理可以在接通状态下以实际运动开始,并且当找到大的路径差时,机器人的实际运动可能被无效。
    • 56. 发明授权
    • Force-controlled robot system with visual sensor for performing fitting
operation
    • 带有视觉传感器的力控机器人系统进行装配操作
    • US6141863A
    • 2000-11-07
    • US91730
    • 1998-06-24
    • Ryuichi HaraKazunori Ban
    • Ryuichi HaraKazunori Ban
    • B25J9/16B25J19/02B23P21/00
    • B25J19/021B25J9/1633B25J9/1687G05B2219/37048G05B2219/39319G05B2219/39393G05B2219/39529G05B2219/40609Y10T29/53061Y10T29/53078Y10T29/53087
    • A force-controlled robot system with a visual sensor capable of performing a fitting operation automatically with high reliability. A force sensor attached to a wrist portion of a robot detects force in six axis directions for force control, and transmits the results of detection to a robot controller. Position and orientation of a convex portion of a fit-in workpiece held by claws of a robot hand and position and orientation of a concave position of a receiving workpiece positioned by a positioning device are detected by a three-dimensional visual sensor including a structured light unit SU and an image processor in the robot controller, and a robot position to start an inserting action is corrected. Then, the convex portion is inserted into the concave portion under the force control. After the inserting action completes, it is determined whether or not the insertion state of the fit-in workpiece in the receiving workpiece is normal.
    • PCT No.PCT / JP97 / 03878 Sec。 371日期:1998年6月24日 102(e)日期1998年6月24日PCT 1997年10月24日PCT公布。 第WO98 / 17444号公报 日期:1998年04月30日具有能够以高可靠性自动进行装配作业的视觉传感器的力控机器人系统。 附着在机器人腕部的力传感器检测六轴方向的力用于力控制,并将检测结果发送到机器人控制器。 由机器人手的爪保持的装配工件的凸部的位置和取向以及由定位装置定位的接收工件的凹入位置的位置和取向由包括结构光的三维视觉传感器 单元SU和机器人控制器中的图像处理器以及开始插入动作的机器人位置被校正。 然后,在力控制下,将凸部插入凹部。 在插入动作完成之后,确定装配工件在接收工件中的插入状态是否正常。
    • 57. 发明申请
    • WORKPIECE REMOVING DEVICE AND METHOD
    • 工作去除装置和方法
    • US20120029686A1
    • 2012-02-02
    • US13184721
    • 2011-07-18
    • Kazunori BanHidetoshi KumiyaToshiyuki Ando
    • Kazunori BanHidetoshi KumiyaToshiyuki Ando
    • G06F7/00
    • B25J9/1679B25J9/1697G05B2219/40053
    • A workpiece removing device including a camera for imaging a workpiece loading area including a plurality of workpieces loaded in bulk; a workpiece detection section for detecting a workpiece, based on a camera image taken with the camera; a workpiece selection section for selecting a workpiece adapted to be removed, based on a detection result by the workpiece detection section; a robot for removing the workpiece selected by the workpiece selection section; a loading state determination section for determining whether a loading state of the workpieces in the workpiece loading area has changed due to a operation of the robot; and an area setting section for setting a workpiece detection area where the workpiece detection section detects a workpiece. If the loading state determination section determines that the loading state of the workpieces has changed, the area setting section sets the workpiece detection area in a peripheral area of a changing position of the loading state, i.e., in a portion of the workpiece loading area.
    • 一种工件移除装置,包括用于对包括多个装载的工件的工件装载区域进行成像的照相机; 基于用所述照相机拍摄的照相机图像来检测工件的工件检测部; 工件选择部,其基于所述工件检测部的检测结果来选择适于被去除的工件; 用于去除由工件选择部选择的工件的机器人; 装载状态判定部,其判断由于所述机器人的动作而使所述工件装载区域内的工件的装载状态发生了变化; 以及区域设定部,用于设定工件检测部检测出工件的工件检测区域。 如果装载状态确定部确定工件的装载状态已经改变,则区域设定部将工件检测区域设定在装载状态的变更位置的周边区域中,即在工件装载区域的一部分中。
    • 58. 发明授权
    • Gripping type hand
    • 握手式手
    • US07445260B2
    • 2008-11-04
    • US11245012
    • 2005-10-07
    • Ryo NiheiKazunori BanTakashi SatoToshinari TamuraKokoro Hatanaka
    • Ryo NiheiKazunori BanTakashi SatoToshinari TamuraKokoro Hatanaka
    • B25J13/08B25J15/08
    • B25J9/1612B25J13/082B25J15/08Y10S294/907
    • A gripping type hand including a plurality of finger mechanisms provided respectively with finger joints, actuators for driving the finger joints, and links supported by the finger joints and operating under driving force of the actuators. The gripping type hand includes an operation controlling section capable of respectively controlling the actuators of the plurality of finger mechanisms independently from each other; a position detecting section for respectively detecting operating positions of the finger joints of the plurality of finger mechanisms; and strain detecting sections provided respectively for the plurality of finger mechanisms and detecting strains generating in the links due to force applied to the finger mechanisms. The operation controlling section coordinately controls the actuators of the plurality of finger mechanisms to adjust gripping force generated by the plurality of finger mechanisms, based on the operating positions of the finger joints detected by the position detecting section and the strains of the links detected by the strain detecting sections.
    • 夹持型手包括分别设置有手指接头的多个指状机构,用于驱动指关节的致动器,以及由手指接头支撑的链节,并且在致动器的驱动力下操作。 夹持型手包括能够彼此独立地分别控制多个手指机构的致动器的操作控制部; 位置检测部分,用于分别检测多个手指机构的手指关节的操作位置; 和应变检测部分分别设置用于多个手指机构,并且由于施加到手指机构的力而检测在链接中产生的应变。 操作控制部基于由位置检测部检测到的手指关节的操作位置和由所述多个手指机构检测到的链节的张力,协调地控制多个手指机构的致动器,以调整由多个手指机构产生的夹持力 应变检测部分。
    • 59. 发明授权
    • Measuring system
    • 测量系统
    • US07161321B2
    • 2007-01-09
    • US11100486
    • 2005-04-07
    • Kazunori BanMakoto Yamada
    • Kazunori BanMakoto Yamada
    • B25J9/16
    • B25J9/1692G05B2219/39008G05B2219/39394G05B2219/40607
    • The image of a tool center point (31) caught by a camera (light-receiving device) 4 from two initial positions is moved to a predetermined point, by a predetermined point moving process, at the center of a light-receiving surface thereby to acquire robot positions (Qf1, Qf2), based on which the direction of the view line (40) is determined. Next, the robot is moved to the position where the position (Qf1) is rotated by 180 degrees around the Z axis of a coordinate system (Σv1) thereby to execute the predetermined point moving process. After rotational movement, a robot position (Qf3) is acquired. The midpoint between the position (Qf1) and the position (Qf3) is determined as the origin of a coordinate system (Σv2). Using the position and the posture of the view line (40), the position of the tool center point (31) is determined. Thus, the position of the tool center point with respect to the tool mounting surface can be determined using a fixed light-receiving device. By additionally measuring two points at known relative positions from the tool center point, the tool posture as well as the position of the tool center point can be determined.
    • 由相机(光接收装置)4从两个初始位置捕获的工具中心点(31)的图像在预定点移动过程中移动到预定点,在光接收表面的中心,从而 获取机器人位置(Qf 1,Qf 2),基于该位置确定视线(40)的方向。 接下来,机器人移动到位置(Qf 1)围绕坐标系(Sigmav 1)的Z轴旋转180度的位置,从而执行预定点移动处理。 在旋转运动之后,获取机器人位置(Qf 3)。 位置(Qf 1)和位置(Qf 3)之间的中点被确定为坐标系的原点(Sigmav 2)。 使用视线(40)的位置和姿势,确定工具中心点(31)的位置。 因此,可以使用固定的光接收装置来确定工具中心点相对于工具安装面的位置。 通过在工具中心点的已知相对位置附加测量两个点,可以确定刀具姿势以及刀具中心点的位置。
    • 60. 发明申请
    • Finishing machine
    • 整理机
    • US20060039768A1
    • 2006-02-23
    • US11204225
    • 2005-08-16
    • Kazunori BanTakashi SatoKokoro Hatanaka
    • Kazunori BanTakashi SatoKokoro Hatanaka
    • B23C1/16
    • G05B19/4163Y02P90/265Y10T409/30084Y10T409/301792Y10T409/303472Y10T409/304256
    • A surface of a workpiece, from which the burr is removed, is traced when a machining tool is pressed onto the surface of the workpiece under force control so as to find the positional data of the surface shape (S1). This positional data is corrected by an error caused by a bend of a robot (S2). The thus obtained positional data is compared with the target shape of the surface, from which the burr is removed, obtained from CAD data (S6, S10). A shift of the surface shape in the normal line direction is found (S7, S11). The burr generation start position, the burr generation end position and the height of the burr are found by the shift start position (S8), the shift end position and the shift size (S14). A machining program is made which is composed of a pass connecting the burr end position with the burr start position and also composed of a cutting pass for removing the burr, and the thus made machining program is executed (S16, S17). As the burr position is found and the burr is removed when the machining tool is moved to the burr position, the burr can be effectively removed. Due to the foregoing, it is possible to provide a finishing machine characterized in that useless burr removing actions can be reduced and, further, that the overcutting of a workpiece can be prevented.
    • 当加工工具在力控制下被压在工件的表面上时,跟踪去除毛刺的工件的表面,以找到表面形状的位置数据(S 1)。 该位置数据由机器人的弯曲引起的误差进行校正(S 2)。 将如此获得的位置数据与从CAD数据获得的表面的目标形状(从其中除去毛刺)进行比较(S 6,S 10)。 发现在法线方向上的表面形状的偏移(S 7,S 11)。 通过换档开始位置(S 8),换档结束位置和换档尺寸(S14)找到毛刺生成开始位置,毛刺生成结束位置和毛刺高度。 进行加工程序,该加工程序由将毛刺末端位置与毛刺开始位置连接的通路构成,并且还包括用于去除毛刺的切割道,并且由此制造的加工程序被执行(S16,S17)。 当加工刀具移动到毛刺位置时,当发现毛刺位置并除去毛刺时,可以有效地去除毛刺。 由于上述原因,可以提供一种整理机,其特征在于可以减少无用的毛刺去除动作,另外可以防止工件的过度切割。