会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 41. 发明授权
    • Radiation shield device and method
    • 辐射屏蔽装置及方法
    • US06617600B1
    • 2003-09-09
    • US09505595
    • 2000-02-16
    • Andrew M. HawrylukJoe GortychYu Chue Fong
    • Andrew M. HawrylukJoe GortychYu Chue Fong
    • G21F100
    • B23K26/706
    • A radiation shield device (100) and method, the apparatus comprising either an absorbing shield (130), a scattering shield (200) or an absorbing and scattering shield (300) arranged in a processing tool (50) that irradiates a workpiece (70) with high-irradiance radiation (80) from a light source (78). The processing tool has a tool portion (66) having an irradiance damage threshold (IDT). The radiation shield device is designed to intercept a portion of the high-irradiance radiation that would otherwise be incident the tool portion, and to ensure that radiation exiting the particular shield comprising the radiation shield device and incident the tool portion has an irradiance below the tool portion irradiance damage threshold. The method includes using the radiation shield device in processing a workpiece using a processing tool.
    • 一种辐射屏蔽装置(100)和方法,该装置包括布置在照射工件(70)的处理工具(50)中的吸收屏蔽(130),散射屏蔽(200)或吸收和散射屏蔽(300) )具有来自光源(78)的高辐照度辐射(80)。 处理工具具有具有辐照损伤阈值(IDT)的工具部分(66)。 辐射屏蔽装置被设计成拦截否则将入射到工具部分的高辐射辐射的一部分,并且确保离开包括辐射屏蔽装置并入射到工具部分的特定屏蔽的辐射在工具下方具有辐照度 部分辐照损伤阈值。 该方法包括使用辐射屏蔽装置使用加工工具处理工件。
    • 42. 发明授权
    • Thermally induced reflectivity switch for laser thermal processing
    • 用于激光热处理的热感应反射开关
    • US06495390B2
    • 2002-12-17
    • US09940102
    • 2001-08-27
    • Andrew M. HawrylukSomit TalwarYun WangMichael O. Thompson
    • Andrew M. HawrylukSomit TalwarYun WangMichael O. Thompson
    • H01L2100
    • B23K26/18B23K26/009H01L21/268H01L21/324
    • A method, apparatus and system for controlling the amount of heat transferred to a process region (30) of a workpiece (W) from exposure with laser radiation (10) using a thermally induced reflectivity switch layer (60). The apparatus of the invention is a film stack (6) having an absorber layer (50) deposited atop the workpiece, such as a silicon wafer. A portion of the absorber layer covers the process region. The absorber layer absorbs laser radiation and converts the absorbed radiation into heat. A reflective switch layer (60) is deposited atop the absorber layer. The reflective switch layer may comprise one or more thin film layers, and preferably includes a thermal insulator layer and a transition layer. The portion of the reflective switch layer covering the process region has a temperature that corresponds to the temperature of the process region. The reflectivity of the reflectivity switch layer changes from a low reflectivity state to a high reflectivity state at a critical temperature so as to limit the amount of radiation absorbed by the absorber layer by reflecting the incident radiation. This, in turn, limits the amount of heat transferred to the process region from the absorber layer.
    • 一种用于通过使用热诱导反射率开关层(60)从激光辐射(10)曝光来控制传送到工件(W)的处理区域(30)的热量的方法,装置和系统。 本发明的装置是具有沉积在工件上方的诸如硅晶片的吸收层(50)的薄膜叠层(6)。 吸收层的一部分覆盖工艺区域。 吸收层吸收激光辐射并将吸收的辐射转化成热。 反射开关层(60)沉积在吸收层顶部。 反射开关层可以包括一个或多个薄膜层,并且优选地包括热绝缘体层和过渡层。 覆盖处理区域的反射开关层的部分具有对应于处理区域的温度的温度。 反射率开关层的反射率在临界温度从低反射率状态变为高反射率状态,以通过反射入射辐射来限制吸收层吸收的辐射量。 这反过来限制了从吸收层传递到处理区域的热量。
    • 43. 发明授权
    • Radiant energy monitoring apparatuses including a calibration operation and related methods
    • 辐射能量监测装置,包括校准操作和相关方法
    • US06303917B1
    • 2001-10-16
    • US09311935
    • 1999-05-14
    • Andrew M. Hawryluk
    • Andrew M. Hawryluk
    • G01J132
    • H01L22/26G01J1/32
    • The invented apparatus can be used to monitor the radiant energy delivered to a substrate for treatment thereof. The radiant energy can be laser light or light generated by a flash-lamp, for example. The apparatus includes an energy-tapping member such as a beam splitter, that is positioned between a source and optical element(s) used to generate and modify radiant energy, and a substrate to be treated with the radiant energy. The energy-tapping member receives radiant energy from the source and optical element(s), and divides the radiant energy from the source and optical element(s) into two portions. The first portion of radiant energy travels from the energy-tapping member to the substrate for treatment thereof. The apparatus includes an energy sensor such as a photodiode, arranged to receive the second portion of radiant energy. The energy sensor generates a signal indicative of the radiant energy supplied to the substrate. The energy-tapping member is preferably positioned optically downstream from the optical element(s) as the last or near last element encountered by the radiant energy. As so positioned, thermal or mechanical drifts in the optical element(s) have little or no impact on the ability of the invented apparatus to determine the amount of radiant energy supplied to the substrate. The apparatus can include a processing unit coupled to receive the sensor signal, which integrates the sensor signal to generate a signal indicative of the amount of radiant energy supplied to the substrate. The processing unit can also generate a visual display of the amount of radiant energy supplied to the substrate. The invention also includes related methods.
    • 本发明的装置可用于监测传送到基板的辐射能以进行处理。 辐射能可以是例如由闪光灯产生的激光或光。 该装置包括位于用于产生和修改辐射能的源和光学元件之间的诸如分束器的能量攻丝构件以及将被辐射能量处理的衬底。 能量敲击构件从源和光学元件接收辐射能,并且将来自源和光学元件的辐射能分成两部分。 辐射能的第一部分从能量攻丝构件移动到基​​板以进行处理。 该装置包括能量传感器,例如光电二极管,被布置成接收辐射能的第二部分。 能量传感器产生指示供应给基板的辐射能的信号。 能量攻丝构件优选地作为辐射能量遇到的最后或最后一个元件光学地位于光学元件的下游。 如此定位,光学元件中的热或机械漂移对本发明设备确定供应到基板的辐射能量的能力几乎没有影响或没有影响。 该装置可以包括耦合以接收传感器信号的处理单元,该传感器信号对传感器信号进行积分,以产生指示供应给基板的辐射能量的信号。 处理单元还可以产生供应到基板的辐射能量的视觉显示。 本发明还包括相关方法。
    • 44. 发明授权
    • Forming aspheric optics by controlled deposition
    • 通过控制沉积形成非球面光学
    • US5745286A
    • 1998-04-28
    • US542758
    • 1995-10-13
    • Andrew M. Hawryluk
    • Andrew M. Hawryluk
    • G02B3/02G02B5/10G02B5/08G02B1/10
    • G02B3/02G02B5/10
    • An aspheric optical element formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin (.about.100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application.
    • 通过控制沉积将材料沉积到光学元件的球形表面上以形成所需形状的非球面形成的非球面光学元件。 然后可以通过蒸发或溅射技术在非球面上形成单层或多层的反射表面。 非球面光学元件适用于深紫外(UV)和x射线波长。 反射表面可以例如是铝(DIFFERENCE 100nm)的薄层,或者在一些情况下,沉积的修饰层可以用作反射表面。 对于某些应用,可以使用多层反射表面,例如铬碳或钨 - 碳多层,层数和厚度由预期应用确定。
    • 49. 发明授权
    • Laser spike annealing for GaN LEDs
    • GaN LED激光尖峰退火
    • US08592309B2
    • 2013-11-26
    • US12590360
    • 2009-11-06
    • Yun WangAndrew M. Hawryluk
    • Yun WangAndrew M. Hawryluk
    • H01L21/44
    • H01L33/0095H01L33/007H01L33/025H01L33/42
    • Methods of performing laser spike annealing (LSA) in forming gallium nitride (GaN) light-emitting diodes (LEDs) as well as GaN LEDs formed using LSA are disclosed. An exemplary method includes forming atop a substrate a GaN multilayer structure having a n-GaN layer and a p-GaN layer that sandwich an active layer. The method also includes performing LSA by scanning a laser beam over the p-GaN layer. The method further includes forming a transparent conducting layer atop the GaN multilayer structure, and adding a p-contact to the transparent conducting layer and a n-contact to the n-GaN layer. The resultant GaN LEDs have enhanced output power, lower turn-on voltage and reduced series resistance.
    • 公开了在形成氮化镓(GaN)发光二极管(LED)以及使用LSA形成的GaN LED中执行激光尖峰退火(LSA)的方法。 一种示例性方法包括在衬底上形成具有n-GaN层的GaN多层结构和夹持有源层的p-GaN层。 该方法还包括通过在p-GaN层上扫描激光束来执行LSA。 所述方法还包括在所述GaN多层结构顶部形成透明导电层,以及向所述n-GaN层向所述透明导电层添加p接触和n接触。 所得GaN LED具有增强的输出功率,较低的导通电压和降低的串联电阻。
    • 50. 发明申请
    • Minimization of Surface Reflectivity
    • 最小化表面反射率
    • US20120223062A1
    • 2012-09-06
    • US13472383
    • 2012-05-15
    • Andrew M. Hawryluk
    • Andrew M. Hawryluk
    • H01L21/268B23K26/00
    • H01L21/268B23K26/0738B23K26/0853B23K26/352B23K26/354B23K2101/40H01L21/28044
    • Apparatuses and methods are provided for processing a surface of a substrate. The substrate may have a surface pattern that exhibits directionally and/or orientationally different reflectivities relative to radiation of a selected wavelength and polarization. The apparatus may include a radiation source that emits a photonic beam of the selected wavelength and polarization directed toward the surface at orientation angle and incidence angle selected to substantially minimize substrate surface reflectivity variations and/or minimize the maximum substrate surface reflectivity during scanning. Also provided are methods and apparatuses for selecting an optimal orientation and/or incidence angle for processing a surface of a substrate.
    • 提供了用于处理基底表面的装置和方法。 衬底可以具有相对于所选波长和偏振的辐射呈现方向和/或取向不同的反射率的表面图案。 该装置可以包括发射所选波长的光子束的辐射源,并且以定向角和入射角定位朝向表面的极化,其被选择为基本上最小化衬底表面反射率变化和/或最小化扫描期间的最大衬底表面反射率。 还提供了用于选择用于处理衬底的表面的最佳取向和/或入射角的方法和装置。