会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 44. 发明申请
    • Liquid phase epitaxial GOI photodiode with buried high resistivity germanium layer
    • 液相外延GOI光电二极管,埋置高电阻率锗层
    • US20070170536A1
    • 2007-07-26
    • US11339011
    • 2006-01-25
    • Sheng HsuJong-Jan LeeJer-Shen MaaDouglas Tweet
    • Sheng HsuJong-Jan LeeJer-Shen MaaDouglas Tweet
    • H01L31/00
    • H01L31/1055H01L31/1808H01L31/1872Y02E10/50
    • A device and associated method are provided for fabricating a liquid phase epitaxial (LPE) Germanium-on-Insulator (GOI) photodiode with buried high resistivity Germanium (Ge) layer. The method provides a silicon (Si) substrate, and forms a bottom insulator overlying the Si substrate with a Si seed access area. Then, a Ge P-I-N diode is formed with an n +-doped (n+) mesa, a p+-doped (p+) Ge bottom insulator interface and mesa lateral interface, and a high resistivity Ge layer interposed between the p+ Ge and n+ Ge. A metal electrode is formed overlying a region of the p+ Ge lateral interface, and a transparent electrode is formed overlying the n+ Ge mesa. In one aspect, the method deposits a silicon nitride layer temporary cap overlying the high resistivity Ge layer, and an annealing is performed to epitaxially crystallize the Ge bottom interface and high resistivity Ge layer.
    • 提供了一种用于制造具有埋置的高电阻率锗(Ge)层的液相外延(LPE)绝缘体锗绝缘体(GOI)光电二极管的器件和相关方法。 该方法提供硅(Si)衬底,并且形成具有Si种子存取区域的覆盖Si衬底的底部绝缘体。 然后,形成具有n +掺杂(n +)台面,p +掺杂(p +)Ge底部绝缘体界面和台面侧面界面的Ge P-I-N二极管,以及插入在p + Ge和n + Ge之间的高电阻率Ge层。 在p + Ge侧面界面的区域上形成金属电极,形成覆盖n + Ge台面的透明电极。 在一个方面,该方法沉积覆盖高电阻率Ge层的氮化硅层临时盖,并进行退火以使Ge底界面和高电阻率Ge层外延结晶。
    • 45. 发明申请
    • Nanotip electrode non-volatile memory resistor cell
    • 纳米电极非易失性存储电阻单元
    • US20070167008A1
    • 2007-07-19
    • US11717818
    • 2007-03-14
    • Sheng HsuFengyan ZhangGregory SteckerRobert Barrowcliff
    • Sheng HsuFengyan ZhangGregory SteckerRobert Barrowcliff
    • H01L21/44
    • H01L27/101H01L45/04H01L45/1233H01L45/1273H01L45/147H01L45/16H01L45/1675
    • A non-volatile memory resistor cell with a nanotip electrode, and corresponding fabrication method are provided. The method comprises: forming a first electrode with nanotips; forming a memory resistor material adjacent the nanotips; and, forming a second electrode adjacent the memory resistor material, where the memory resistor material is interposed between the first and second electrodes. Typically, the nanotips are iridium oxide (IrOx) and have a tip base size of about 50 nanometers, or less, a tip height in the range of 5 to 50 nm, and a nanotip density of greater than 100 nanotips per square micrometer. In one aspect, the substrate material can be silicon, silicon oxide, silicon nitride, or a noble metal. A metalorganic chemical vapor deposition (MOCVD) process is used to deposit Ir. The IrOx nanotips are grown from the deposited Ir.
    • 提供了具有纳米尖端电极的非易失性存储器电阻单元及相应的制造方法。 该方法包括:形成具有纳米尖端的第一电极; 在所述纳米尖端附近形成记忆电阻材料; 并且形成与所述存储电阻材料相邻的第二电极,其中所述存储电阻材料置于所述第一和第二电极之间。 通常,纳米针是氧化铱(IrOx),并且具有约50纳米或更小的尖端基底尺寸,在5至50nm范围内的尖端高度,以及每平方微米大于100纳米尖端的纳米密度密度。 一方面,衬底材料可以是硅,氧化硅,氮化硅或贵金属。 使用金属有机化学气相沉积(MOCVD)工艺沉积Ir。 IrOx纳米尖端从沉积的Ir生长。
    • 46. 发明申请
    • Method of fabricating a low, dark-current germanium-on-silicon pin photo detector
    • 制造低,暗电流硅 - 硅引脚光电探测器的方法
    • US20070141744A1
    • 2007-06-21
    • US11312967
    • 2005-12-19
    • Jong-Jan LeeDouglas TweetJer-Shen MaaSheng Hsu
    • Jong-Jan LeeDouglas TweetJer-Shen MaaSheng Hsu
    • H01L21/00
    • H01L31/105H01L31/1808H01L31/1864Y02E10/50Y02P70/521Y10S438/933
    • A method of fabricating a low, dark-current germanium-on-silicon PIN photo detector includes preparing a P-type silicon wafer; implanting the P-type silicon wafer with boron ions; activating the boron ions to form a P+ region on the silicon wafer; forming a boron-doped germanium layer on the P+ silicon surface; depositing an intrinsic germanium layer on the born-doped germanium layer; cyclic annealing, including a relatively high temperature first anneal step and a relatively low temperature second anneal step; repeating the first and second anneal steps for about twenty cycles, thereby forcing crystal defects to the P+ germanium layer; implanting ions in the surface of germanium layer to form an N+ germanium surface layer and a PIN diode; activating the N+ germanium surface layer by thermal anneal; and completing device according to known techniques to form a low dark-current germanium-on-silicon PIN photodetector.
    • 制造低,暗电流锗硅PIN光检测器的方法包括制备P型硅晶片; 用硼离子注入P型硅晶片; 激活硼离子以在硅晶片上形成P +区; 在P +硅表面上形成硼掺杂锗层; 在天然掺杂锗层上沉积本征锗层; 循环退火,包括相对高温的第一退火步骤和相对低温的第二退火步骤; 重复第一和第二退火步骤约20个循环,由此迫使晶体缺陷到P +锗层; 在锗层表面注入离子以形成N +锗表面层和PIN二极管; 通过热退火激活N +锗表面层; 并根据已知技术完成器件以形成低暗电流锗硅PIN光电探测器。
    • 47. 发明申请
    • Photovoltaic structure with a conductive nanowire array electrode
    • 具有导电纳米线阵列电极的光伏结构
    • US20070111368A1
    • 2007-05-17
    • US11280423
    • 2005-11-16
    • Fengyan ZhangRobert BarrowcliffSheng Hsu
    • Fengyan ZhangRobert BarrowcliffSheng Hsu
    • H01L51/40H01L21/00
    • H01L51/4213B82Y10/00H01L51/0046H01L51/0048H01L51/4226H01L51/4233H01L51/441Y02E10/52Y02E10/549
    • A photovoltaic (PV) structure is provided, along with a method for forming a PV structure with a conductive nanowire array electrode. The method comprises: forming a bottom electrode with conductive nanowires; forming a first semiconductor layer of a first dopant type (i.e., n-type) overlying the nanowires; forming a second semiconductor layer of a second dopant type, opposite of the first dopant type (i.e., p-type), overlying the first semiconductor layer; and, forming a top electrode overlying the second semiconductor layer. The first and second semiconductor layers can be a material such as a conductive polymer, a conjugated polymer with a fullerene derivative, and inorganic materials such as CdSe, CdS, Titania, or ZnO. The conductive nanowires can be a material such as IrO2, In2O3, SnO2, or indium tin oxide (ITO).
    • 提供光伏(PV)结构以及用于形成具有导电纳米线阵列电极的PV结构的方法。 该方法包括:形成具有导电纳米线的底电极; 形成覆盖在纳米线上的第一掺杂剂型(即n型)的第一半导体层; 形成与所述第一掺杂剂类型(即,p型)相反的第二掺杂剂类型的第二半导体层,所述第二掺杂剂类型覆盖所述第一半导体层; 以及形成覆盖所述第二半导体层的顶部电极。 第一和第二半导体层可以是诸如导电聚合物,具有富勒烯衍生物的共轭聚合物和诸如CdSe,CdS,二氧化钛或ZnO的无机材料的材料。 导电纳米线可以是诸如IrO 2,In 2 O 3,SnO 2,或铟的材料 氧化锡(ITO)。
    • 48. 发明申请
    • Nanocrystal silicon quantum dot memory device
    • 纳米晶硅量子点存储器件
    • US20070108502A1
    • 2007-05-17
    • US11281955
    • 2005-11-17
    • Tingkai LiSheng HsuLisa Stecker
    • Tingkai LiSheng HsuLisa Stecker
    • H01L29/788H01L21/336G11C16/04
    • H01L29/7881B82Y10/00G11C16/349G11C16/3495G11C2216/08H01L29/15H01L29/40114H01L29/42324H01L29/4925H01L29/66825
    • A nanocrystal silicon (Si) quantum dot memory device and associated fabrication method have been provided. The method comprises: forming a gate (tunnel) oxide layer overlying a Si substrate active layer; forming a nanocrystal Si memory film overlying the gate oxide layer, including a polycrystalline Si (poly-Si)/Si dioxide stack; forming a control Si oxide layer overlying the nanocrystal Si memory film; forming a gate electrode overlying the control oxide layer; and, forming source/drain regions in the Si active layer. In one aspect, the nanocrystal Si memory film is formed by depositing a layer of amorphous Si (a-Si) using a chemical vapor deposition (CVD) process, and thermally oxidizing a portion of the a-Si layer. Typically, the a-Si deposition and oxidation processes are repeated, forming a plurality of poly-Si/Si dioxide stacks (i.e., 2 to 5 poly-Si/Si dioxide stacks).
    • 已经提供了纳米晶体硅(Si)量子点存储器件和相关的制造方法。 该方法包括:形成覆盖Si衬底有源层的栅极(隧道)氧化层; 形成覆盖栅极氧化物层的纳米晶Si记忆膜,包括多晶Si(多晶硅)/二氧化硅叠层; 形成覆盖在纳米晶Si记忆膜上的对照Si氧化物层; 形成覆盖所述控制氧化物层的栅电极; 并且在Si有源层中形成源/漏区。 在一个方面,通过使用化学气相沉积(CVD)工艺沉积非晶硅层(a-Si)并热氧化a-Si层的一部分来形成纳米晶体Si记忆膜。 通常,重复a-Si沉积和氧化过程,形成多个多Si /二氧化硅叠层(即2至5个多硅/二氧化硅叠层)。
    • 49. 发明申请
    • Metal/semiconductor/metal (MSM) back-to-back Schottky diode
    • 金属/半导体/金属(MSM)背对背肖特基二极管
    • US20070015330A1
    • 2007-01-18
    • US11435669
    • 2006-05-17
    • Tingkai LiSheng HsuDavid Evans
    • Tingkai LiSheng HsuDavid Evans
    • H01L21/8242
    • H01L27/101G11C13/0007G11C2213/31H01L27/2409H01L29/66143H01L29/872H01L45/04H01L45/1233H01L45/147
    • A method is provided for forming a metal/semiconductor/metal (MSM) back-to-back Schottky diode from a silicon (Si) semiconductor. The method deposits a Si semiconductor layer between a bottom electrode and a top electrode, and forms a MSM diode having a threshold voltage, breakdown voltage, and on/off current ratio. The method is able to modify the threshold voltage, breakdown voltage, and on/off current ratio of the MSM diode in response to controlling the Si semiconductor layer thickness. Generally, both the threshold and breakdown voltage are increased in response to increasing the Si thickness. With respect to the on/off current ratio, there is an optimal thickness. The method is able to form an amorphous Si (a-Si) and polycrystalline Si (polySi) semiconductor layer using either chemical vapor deposition (CVD) or DC sputtering. The Si semiconductor can be doped with a Group V donor material, which decreases the threshold voltage and increases the breakdown voltage.
    • 提供了用于从硅(Si)半导体形成金属/半导体/金属(MSM)背对背肖特基二极管的方法。 该方法在底电极和顶电极之间沉积Si半导体层,并形成具有阈值电压,击穿电压和开/关电流比的MSM二极管。 响应于控制Si半导体层厚度,该方法能够修改MSM二极管的阈值电压,击穿电压和导通/截止电流比。 通常,响应于Si厚度的增加,阈值和击穿电压都增加。 关于开/关电流比,存在最佳厚度。 该方法能够使用化学气相沉积(CVD)或DC溅射形成非晶Si(a-Si)和多晶硅(polySi)半导体层。 Si半导体可以掺杂有V族施主材料,其降低阈值电压并增加击穿电压。