会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 35. 发明申请
    • Wide wavelength range silicon electroluminescence device
    • 宽波长范围的硅电致发光器件
    • US20060180816A1
    • 2006-08-17
    • US11058505
    • 2005-02-14
    • Tingkai LiWei GaoYoshi OnoSheng Hsu
    • Tingkai LiWei GaoYoshi OnoSheng Hsu
    • H01L29/26
    • H05B33/145
    • A method is provided for forming a Si electroluminescence (EL) device for emitting light at short wavelengths. The method comprises: providing a substrate; forming a first insulator layer overlying the substrate; forming a silicon-rich silicon oxide (SRSO) layer overlying the first insulator layer, embedded with nanocrystalline Si having a size in the range of 0.5 to 5 nm; forming a second insulator layer overlying the SRSO layer; and, forming a top electrode. Typically, the SRSO has a Si richness in the range of 5 to 40%. In one aspect, the SRSO layer is formed using a DC sputtering process. In another aspect, the SRSO formation step includes a rapid thermal annealing (RTA) process subsequent to depositing the SRSO. Likewise, thermal oxidation or plasma oxidation can be performed subsequent to the SRSO layer deposition. The size of Si nanocrystals is decreased in response to above-mentioned deposition, annealing, and oxidation processes.
    • 提供一种用于形成用于发射短波长的光的Si电致发光(EL)装置的方法。 该方法包括:提供衬底; 形成覆盖所述衬底的第一绝缘体层; 形成覆盖在第一绝缘体层上的富硅氧化物(SRSO)层,其中嵌入尺寸在0.5至5nm范围内的纳米晶体Si; 形成覆盖所述SRSO层的第二绝缘体层; 并形成顶部电极。 通常,SRSO的Si浓度范围为5〜40%。 在一个方面,使用DC溅射工艺形成SRSO层。 另一方面,SRSO形成步骤包括在沉积SRSO之后的快速热退火(RTA)工艺。 同样地,可以在SRSO层沉积之后进行热氧化或等离子体氧化。 响应于上述沉积,退火和氧化过程,Si纳米晶体的尺寸减小。
    • 37. 发明申请
    • Semiconductive metal oxide thin film ferroelectric memory transistor
    • 半导体金属氧化物薄膜铁电存储晶体管
    • US20060038242A1
    • 2006-02-23
    • US10922712
    • 2004-08-20
    • Sheng HsuTingkai LiJong-Jan Lee
    • Sheng HsuTingkai LiJong-Jan Lee
    • H01L29/94H01L29/76
    • H01L29/7869H01L29/516H01L29/66545H01L29/66553H01L29/78621
    • The present invention discloses a novel transistor structure employing semiconductive metal oxide as the transistor conductive channel. By replacing the silicon conductive channel with a semiconductive metal oxide channel, the transistors can achieve simpler fabrication process and could realize 3D structure to increase circuit density. The disclosed semiconductive metal oxide transistor can have great potential in ferroelectric non volatile memory device with the further advantages of good interfacial properties with the ferroelectric materials, possible lattice matching with the ferroelectric layer, reducing or eliminating the oxygen diffusion problem to improve the reliability of the ferroelectric memory transistor. The semiconductive metal oxide film is preferably a metal oxide exhibiting semiconducting properties at the transistor operating conditions, for example, In2O3 or RuO2. The present invention ferroelectric transistor can be a metal-ferroelectric-semiconductive metal oxide FET having a gate stack of a top metal electrode disposed on a ferroelectric layer disposed on a semiconductive metal oxide channel on a substrate. Using additional layer of bottom electrode and gate dielectric, the present invention ferroelectric transistor can also be a metal-ferroelectric-metal (optional)-gate dielectric (optional)-semiconductive metal oxide FET.
    • 本发明公开了一种采用半导体金属氧化物作为晶体管导电通道的新型晶体管结构。 通过用半导体金属氧化物沟道代替硅导电通道,晶体管可以实现更简单的制造工艺,并且可以实现3D结构以增加电路密度。 所公开的半导体金属氧化物晶体管可以在铁电非易失性存储器件中具有很大的潜力,具有与铁电材料良好的界面性质,与铁电层的可能的晶格匹配,减少或消除氧扩散问题以提高可靠性的另外的优点 铁电存储晶体管。 半导体金属氧化物膜优选是在晶体管工作条件下表现出半导体性质的金属氧化物,例如在二氧化铈或RuO 2 。 本发明的铁电晶体管可以是金属铁电半导体金属氧化物FET,其具有设置在设置在基板上的半导体金属氧化物沟道上的铁电层上的顶部金属电极的栅极堆叠。 使用附加的底部电极和栅极电介质层,本发明的铁电晶体管也可以是金属 - 铁电 - 金属(可选) - 门电介质(可选) - 导电金属氧化物FET。
    • 40. 发明申请
    • Nanocrystal silicon quantum dot memory device
    • 纳米晶硅量子点存储器件
    • US20070108502A1
    • 2007-05-17
    • US11281955
    • 2005-11-17
    • Tingkai LiSheng HsuLisa Stecker
    • Tingkai LiSheng HsuLisa Stecker
    • H01L29/788H01L21/336G11C16/04
    • H01L29/7881B82Y10/00G11C16/349G11C16/3495G11C2216/08H01L29/15H01L29/40114H01L29/42324H01L29/4925H01L29/66825
    • A nanocrystal silicon (Si) quantum dot memory device and associated fabrication method have been provided. The method comprises: forming a gate (tunnel) oxide layer overlying a Si substrate active layer; forming a nanocrystal Si memory film overlying the gate oxide layer, including a polycrystalline Si (poly-Si)/Si dioxide stack; forming a control Si oxide layer overlying the nanocrystal Si memory film; forming a gate electrode overlying the control oxide layer; and, forming source/drain regions in the Si active layer. In one aspect, the nanocrystal Si memory film is formed by depositing a layer of amorphous Si (a-Si) using a chemical vapor deposition (CVD) process, and thermally oxidizing a portion of the a-Si layer. Typically, the a-Si deposition and oxidation processes are repeated, forming a plurality of poly-Si/Si dioxide stacks (i.e., 2 to 5 poly-Si/Si dioxide stacks).
    • 已经提供了纳米晶体硅(Si)量子点存储器件和相关的制造方法。 该方法包括:形成覆盖Si衬底有源层的栅极(隧道)氧化层; 形成覆盖栅极氧化物层的纳米晶Si记忆膜,包括多晶Si(多晶硅)/二氧化硅叠层; 形成覆盖在纳米晶Si记忆膜上的对照Si氧化物层; 形成覆盖所述控制氧化物层的栅电极; 并且在Si有源层中形成源/漏区。 在一个方面,通过使用化学气相沉积(CVD)工艺沉积非晶硅层(a-Si)并热氧化a-Si层的一部分来形成纳米晶体Si记忆膜。 通常,重复a-Si沉积和氧化过程,形成多个多Si /二氧化硅叠层(即2至5个多硅/二氧化硅叠层)。