会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 33. 发明申请
    • METHOD FOR MAKING SOLAR CELL HAVING CRYSTALLINE SILICON P-N HOMOJUNCTION AND AMORPHOUS SILICON HETEROJUNCTIONS FOR SURFACE PASSIVATION
    • 用于制造具有结晶硅P-N HOMOJUNCTION的太阳能电池和用于表面钝化的非晶硅异质子的方法
    • US20090215218A1
    • 2009-08-27
    • US12036829
    • 2008-02-25
    • Daniel L. MeierAjeet Rohatgi
    • Daniel L. MeierAjeet Rohatgi
    • H01L21/00
    • H01L31/0745H01L31/068H01L31/0747H01L31/078H01L31/202Y02E10/547Y02P70/521
    • A thin silicon solar cell is described. Specifically, the solar cell may be fabricated from a crystalline silicon wafer having a thickness of approximately 50 micrometers to 500 micrometers. The solar cell comprises a first region having a p-n homojunction, a second region that creates heterojunction surface passivation, and a third region that creates heterojunction surface passivation. Amorphous silicon layers are deposited on both sides of the silicon wafer at temperatures below approximately 400 degrees Celsius to reduce the loss of passivation properties of the amorphous silicon. A final layer of transparent conductive oxide is formed on both sides at approximately 165 degrees Celsius. Metal contacts are applied to the transparent conductive oxide. The low temperatures and very thin material layers used to fabricate the outer layers of used to fabricate the outer layers of the solar cell protect the thin wafer from excessive stress that may lead to deforming the wafer.
    • 描述了薄硅太阳能电池。 具体地,太阳能电池可以由厚度约为50微米至500微米的晶体硅晶片制成。 太阳能电池包括具有p-n同质结的第一区域,产生异质结表面钝化的第二区域和产生异质结表面钝化的第三区域。 非晶硅层在低于约400摄氏度的温度下沉积在硅晶片的两侧,以减少非晶硅的钝化性能的损失。 在大约165摄氏度的两侧形成最终的透明导电氧化物层。 将金属触点施加到透明导电氧化物上。 用于制造用于制造太阳能电池的外层的外层的低温和非常薄的材料层保护薄晶片免受可能导致晶片变形的过大应力。
    • 38. 发明授权
    • Deep level transient spectroscopy (DLTS) system and method
    • 深层瞬态光谱(DLTS)系统和方法
    • US5521839A
    • 1996-05-28
    • US116111
    • 1993-09-02
    • William A. DoolittleAjeet Rohatgi
    • William A. DoolittleAjeet Rohatgi
    • G01R31/312G01N27/02
    • G01R31/312
    • A computer-based deep level transient spectroscopy (DLTS) system (10) efficiently digitizes and analyzes capacitance and conductance transients acquired from a test material (13) by conventional DLTS methods as well as by several transient methods, including a covariance method of linear predictive modeling. A unique pseudo-logarithmic data storage scheme allows each transient to be tested at more than eleven different rates, permitting three to five decades of time constants .tau. to be observed during each thermal scan, thereby allowing high resolution of closely spaced defect energy levels. The system (10) comprises a sensor (12) for detecting capacitance and/or conductance transients, a digitizing mechanism (14) for digitizing the capacitance and/or conductance transients, preamplifiers (16a, 16b) for filtering, amplifying, and for forwarding the transients to the digitizing mechanism (14), a pulse generator (18) for supplying a filling pulse to the test material (13) in a cryostat (24), a trigger conditioner for coordinating the timing between the digitizing mechanism (14) and the pulse generator (18), and a temperature controller (26) for changing the temperature of the cryostat (24).
    • 基于计算机的深层瞬态光谱(DLTS)系统(10)有效地数字化并分析了通过常规DLTS方法从测试材料(13)获得的电容和电导瞬态,以及通过几种瞬态方法,包括线性预测的协方差方法 造型。 独特的伪对数数据存储方案允许以超过十一种不同的速率测试每个瞬态,允许在每次热扫描期间观察三到五十年的时间常数τ,从而允许紧密间隔的缺陷能级的高分辨率。 系统(10)包括用于检测电容和/或电导瞬变的传感器(12),用于数字化电容和/或电导瞬变的数字化机构(14),用于过滤,放大和转发的前置放大器(16a,16b) 数字化机构(14)的瞬变,用于向低温恒温器(24)中的测试材料(13)提供填充脉冲的脉冲发生器(18),用于协调数字化机构(14)和 脉冲发生器(18)和用于改变低温恒温器(24)的温度的温度控制器(26)。
    • 39. 发明授权
    • Time varying electrical conductivity tester using frequency
discrimination and power detector and methods thereof
    • 使用鉴频器和功率检测器的时变电导率测试仪及其方法
    • US5495170A
    • 1996-02-27
    • US218805
    • 1994-03-28
    • Robert K. FeeneyAjeet RohatgiDavid R. Hertling
    • Robert K. FeeneyAjeet RohatgiDavid R. Hertling
    • G01N27/02G01R27/02G01R31/26G01N27/72G01R27/28G01R33/12
    • G01N27/023G01R27/02G01R31/2648
    • An electrical conductivity tester accurately measures the time-varying electrical conductivity .sigma.(t) and steady-state electrical conductivity .sigma..sub.ss, of a test material. In a first embodiment, the transmission phase of a probe circuit is monitored to determine the conductivity of a test material. In the first embodiment, an oscillator circuit generates a reference oscillator signal. A probe circuit receives the reference oscillator signal, magnetically couples to the test material, and modifies the reference oscillator signal via electromagnetic induction to derive a modified transmission phase signal. Finally, a phase detector circuit derives a transmission phase signal by combining the reference oscillator signal and the modified transmission phase signal, the transmission phase signal being directly convertible to the conductivity. In a second embodiment, an amplifier is connected to the probe circuit to form an oscillator circuit. The oscillator circuit generates an oscillator signal in response to the magnetic coupling of the probe circuit with the test material. A frequency discriminator generates a frequency signal from the oscillator signal, the frequency signal being convertible to the conductivity.
    • 电导率测试仪精确测量测试材料的时变电导率σ(t)和稳态电导率σss。 在第一实施例中,监测探针电路的透射相以确定测试材料的导电性。 在第一实施例中,振荡器电路产生参考振荡器信号。 探头电路接收参考振荡器信号,磁耦合到测试材料,并通过电磁感应修改参考振荡器信号,以导出修正的传输相位信号。 最后,相位检测器电路通过组合基准振荡器信号和经修改的传输相位信号来获得传输相位信号,传输相位信号可直接转换为导电性。 在第二实施例中,放大器连接到探针电路以形成振荡器电路。 振荡器电路响应于探针电路与测试材料的磁耦合而产生振荡器信号。 频率鉴频器从振荡器信号产生频率信号,频率信号可转换为电导率。
    • 40. 发明授权
    • Method for low temperature plasma enhanced chemical vapor deposition
(PECVD) of an oxide and nitride antireflection coating on silicon
    • 硅上氧化物和氮化物抗反射涂层的低温等离子体增强化学气相沉积(PECVD)方法
    • US5418019A
    • 1995-05-23
    • US248473
    • 1994-05-25
    • Zhizhang ChenAjeet Rohatgi
    • Zhizhang ChenAjeet Rohatgi
    • C23C16/34C23C16/40C23C16/56G02B1/11B05D3/06G02B5/26
    • H01L31/02168C23C16/345C23C16/402C23C16/56G02B1/115Y02E10/50
    • A sequential plasma-enhanced chemical vapor deposition (PECVD) of SiN and SiO.sub.x produces a very effective double-layer antireflection coating. This antireflection coating is compared with the frequently used and highly efficient double-layer MgF.sub.2 /ZnS coating. It is shown that the double-layer SiO.sub.x /SiN coating improves the short-circuited current (J.sub.sc) by 47%, open-circuit voltage (V.sub.oc) by 3.7%, and efficiency (Eff) by 55% for silicon cells with oxide surface passivation. The counterpart MgF.sub.2 /ZnS coating gives smaller improvement in V.sub.oc and Eff. However, if silicon cells do not have the oxide passivation, the PECVD SiO.sub.x /SiN gives much greater improvement in the cell parameters, 57% in J.sub.sc, 8% in V.sub.oc, and 66% in efficiency, compared to the MgF.sub.2 /ZnS coating which improves J.sub.sc by 50%, V.sub.oc by 2%, and cell efficiency by 54%. This significant additional improvement results from the PECVD deposition-induced surface/defect passivation. The internal quantum efficiency (IQE) measurements showed that the PECVD SiO.sub.x /SiN coating absorbs fair amount of photons in the short-wavelength range (
    • SiN和SiOx的顺序等离子体增强化学气相沉积(PECVD)产生非常有效的双层抗反射涂层。 将该抗反射涂层与经常使用且高效的双层MgF2 / ZnS涂层进行比较。 显示双层SiOx / SiN涂层将氧化物表面的硅电池的短路电流(Jsc)提高了47%,开路电压(Voc)提高了3.7%,效率(Eff)提高了55% 钝化。 对应的MgF2 / ZnS涂层在Voc和Eff方面提供较小的改进。 然而,如果硅电池不具有氧化物钝化,则与MgF 2 / ZnS涂层相比,PECVD SiO x / SiN在电池参数方面提供了更大的改进,在Jsc中为57%,Voc为8%,效率为66% 将Jsc提高50%,Voc提高2%,电池效率提高54%。 这种显着的附加改进来自于PECVD沉积诱导的表面/缺陷钝化。 内部量子效率(IQE)测量表明,PECVD SiOx / SiN涂层在短波长范围(<500 nm)吸收了相当数量的光子,然而,改进的表面/缺陷钝化比补偿Jsc和 与MgF2 / ZnS涂层相比,电池效率提高了很多。