会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 24. 发明授权
    • Method for measuring a substitutional carbon concentration
    • 替代碳浓度测定方法
    • US5808745A
    • 1998-09-15
    • US851612
    • 1997-05-06
    • Hiroshi ShiraiMikio WatanabeShinichiro Takasu
    • Hiroshi ShiraiMikio WatanabeShinichiro Takasu
    • C30B13/00G01N21/59G01J40/00G01N21/00
    • C30B29/06C30B13/00G01N21/59
    • A silicon wafer measuring method includes: (a) a first step of measuring a light transmission characteristic (I.sub.OBS) of the pulled silicon wafer by utilizing parallel polarized light incident at the Brewster angle into the pulled silicon wafer, (b) a second step of measuring a light transmission characteristic (I.sub.O) of a floating zone silicon wafer functioning as a reference silicon wafer by utilizing parallel polarized light incident at the Brewster angle into the floating zone silicon wafer, and (c) a third step of calculating a substitutional carbon concentration �C.sub.SC ! on the basis of the light transmission characteristic (I.sub.OBS) of the pulled silicon wafer measured during the first step and the light transmission characteristic (I.sub.O) of the floating zone silicon wafer measured during the second step, (d) a fourth step of comparing the substitutional carbon concentration �C.sub.SC ! of the pulled silicon wafer measured during the third step with a reference value, and (e) a fifth step of removing a pulled silicon wafer if its substitutional carbon concentration �C.sub.SC ! outside of a range of values about the reference value so as to be defective in view of the results compared during the fourth step.
    • 一种硅晶片测量方法包括:(a)第一步骤,通过利用以布鲁斯特角入射的平行偏振光将拉硅晶片的透光特性(IOBS)测量到拉硅晶片中,(b)第二步骤 通过将以布鲁斯特角入射的平行偏振光利用于浮动区硅晶片,测量用作参考硅晶片的浮动区硅晶片的透光特性(IO),以及(c)计算替代碳浓度的第三步骤 [CSC],基于在第一步骤期间测量的拉动硅晶片的透光特性(IOBS)和在第二步骤期间测量的浮动区硅晶片的透光特性(IO),(d)第四步骤 将在第三步骤中测量的拉硅硅片的替代碳浓度[CSC]与参考值进行比较,和(e)第五步骤 如果其替代碳浓度[CSC]超出参考值的值范围之外,则考虑到在第四步骤期间比较的结果而导致有缺陷的拉动硅晶片。
    • 25. 发明授权
    • Navigation system with capability of instructing running direction
    • 具有指导运行方向能力的导航系统
    • US4679147A
    • 1987-07-07
    • US715259
    • 1985-03-25
    • Fumio TsujiiYoji MatsuokaTakanori ShibataAkira EndoHiroshi Shirai
    • Fumio TsujiiYoji MatsuokaTakanori ShibataAkira EndoHiroshi Shirai
    • G01C21/00G01C3/00G01C21/20G01C21/36G08G1/0968G08G1/0969G08G1/137G06F15/50
    • G01C21/3629G01C21/3667
    • A navigation system for displaying, on a display screen, road map information and running traces of a car superimposed thereon comprises a cathode ray tube for displaying the road map information and information regarding the car running traces and the like, bearing sensors for detecting a running direction of the car, a detector for detecting a running distance of the car by detecting a revolution of the car wheel, and a controller receiving outputs from the bearing sensors and the running distance detector, for computing a current position of the car and selecting road map information corresponding to the current position for display thereof on the cathode ray tube. The controller sets specified circular areas centered on respective crossings on the road map information, detects arrival of the car at an entrance to a specified area, determines an angular difference between an approaching running direction of the car and a destination bearing at the entrance, and gives, on the basis of the determined angular difference, a voice instruction for running of the car at the crossing to the driver.
    • 用于在显示屏幕上显示重叠在其上的汽车的道路地图信息和行驶轨迹的导航系统包括用于显示路线图信息和关于汽车行驶轨迹等的信息的阴极射线管,用于检测跑步 汽车的方向,通过检测轿厢的转动来检测轿厢的行驶距离的检测器,以及接收来自轴承传感器和行驶距离检测器的输出的控制器,用于计算轿厢的当前位置和选择道路 将与当前位置相对应的地图信息显示在阴极射线管上。 控制器以路线图信息上的相应交叉口为中心的指定圆形区域,检测汽车在特定区域的入口处的到达,确定轿厢的接近行驶方向与入口处的目的地方位之间的角度差,以及 基于确定的角度差给出用于在与驾驶员的交叉处行驶的汽车的语音指令。
    • 28. 发明申请
    • Apparatus, method, and program for estimation of biological electromagnetic compatibility
    • 用于估计生物电磁兼容性的装置,方法和程序
    • US20050021321A1
    • 2005-01-27
    • US10760376
    • 2004-01-21
    • Shoji MochizukiSouichi WatanabeYukio YamanakaMaso TakiHiroshi Shirai
    • Shoji MochizukiSouichi WatanabeYukio YamanakaMaso TakiHiroshi Shirai
    • G01N22/00G06G7/48G06G7/58H05K9/00
    • H05K9/0069G16H50/50
    • In an apparatus, a method, and a program for estimation of biological electromagnetic compatibility, model data of a scattering body and an electromagnetic wave radiation source, data for prescribing a range to which an MoM including the electromagnetic wave radiation source is applied and a range to which a scattered field type FDTD method including the scattering body and the range to which the MoM is applied, and the like are previously prepared. The distribution of a current distributed by a voltage fed to the electromagnetic wave radiation source is determined by the MoM, incident electromagnetic fields incident on the respective grids in the scattering body are determined using the resultant distribution of the current, an electromagnetic field scattered from the scattering body is determined from the resultant incident electromagnetic field by the scattered field type FDTD method, electromotive forces induced in the respective segments of the electromagnetic wave radiation source are determined from the resultant scattered electromagnetic field, and further the distribution of the current is determined again in consideration of the induced electromotive forces. The above processing steps are repeated until the electromagnetic fields incident on the respective grids in the scattering body, and the like are converged. With the above operation, the biological electromagnetic compatibility can be estimated by executing calculations simply without depending on the distance between the electromagnetic wave radiation source and the scattering body.
    • 在用于估计生物电磁兼容性的装置,方法和程序,散射体和电磁波辐射源的模型数据,用于规定包括电磁波辐射源的MoM的范围的数据和范围 预先制备了包括散射体和施加MoM的范围的散射场型FDTD方法等。 由馈送到电磁波辐射源的电压分布的电流的分布由MoM确定,散射体中入射到各个栅格上的入射电磁场使用电流的分布,从 通过散射场型FDTD方法从所得到的入射电磁场确定散射体,从所得到的散射电磁场确定在电磁波辐射源的各个段中感应的电动势,并且再次确定电流的分布 考虑感应电动势。 重复上述处理步骤,直到入射到散射体中的各个栅格的电磁场等收敛。 通过上述操作,可以简单地执行计算来估计生物电磁兼容性,而不依赖于电磁波辐射源和散射体之间的距离。