会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 25. 发明授权
    • Methods and devices for separating particles in a liquid flow
    • 用于分离液体流中的颗粒的方法和装置
    • US08262883B2
    • 2012-09-11
    • US10549886
    • 2004-03-17
    • Torsten MüllerThomas SchnelleRolf Hagedorn
    • Torsten MüllerThomas SchnelleRolf Hagedorn
    • B01D57/02
    • B03C5/005
    • Methods and devices for the separation of particles (20, 21, 22) in a compartment (30) of a fluidic microsystem (100) are described, in which the movement of a liquid (10) in which particles (20, 21, 22) are suspended with a predetermined direction of flow through the compartment (30), and the generation of a deflecting potential in which at least a part of the particles (20, 21, 22) is moved relative to the liquid in a direction of deflection are envisaged, whereby further at least one focusing potential is generated, so that at least a part of the particles is moved opposite to the direction of deflection relative to the liquid by dielectrophoresis under the effect of high-frequency electrical fields, and guiding of particles with different electrical, magnetic or geometric properties into different flow areas (11, 12) in the liquid takes place.
    • 描述了用于在流体微系统(100)的隔室(30)中分离颗粒(20,21,22)的方法和装置,其中液体(10)的运动,其中颗粒(20,21,22 )以预定的流动方向悬挂通过隔室(30),并产生偏转电位,其中至少一部分颗粒(20,21,22)在偏转方向上相对于液体移动 被设想为进一步产生至少一个聚焦电位,使得至少一部分颗粒在高频电场的作用下通过介电电泳相对于液体的偏转方向移动,并且引导颗粒 在不同的流动区域(11,12)中发生不同的电,磁或几何特性。
    • 26. 发明授权
    • Microfluidic system and corresponding operating method
    • 微流控系统及相应的操作方法
    • US08128797B2
    • 2012-03-06
    • US12161267
    • 2007-01-17
    • Torsten MüllerThomas Schnelle
    • Torsten MüllerThomas Schnelle
    • B03C5/02
    • C12N13/00B01L3/502761B01L2200/0668B01L2300/0645B01L2400/0421
    • The invention relates to an operating method for a microfluidic system, including the following steps: feeding of a carrier flow with particles (5) of a first particle type suspended therein into the microfluidic system; charging of a plurality of electrical field cages (1′, 1″) in the microfluidic system with the supplied particles (5) of the first particle type; the supplying of a carrier flow with particles (6) of a second particle type suspended therein into the microfluidic system; and charging the field cages (1′, 1″) in the microfluidic system with the supplied particles (6) of the second particle type in such a manner that a particle (5) of the first particle type and a particle (6) of the second particle type is present in at least one of the field cages (1′, 1′). The invention also relates to a corresponding microfluidic system.
    • 本发明涉及一种用于微流体系统的操作方法,包括以下步骤:将载体流与悬浮于其中的第一颗粒类型的颗粒(5)进料到微流体系统中; 在微流体系统中与所提供的第一颗粒类型的颗粒(5)充电多个电场笼(1',1“); 将载体流与悬浮在其中的第二颗粒类型的颗粒(6)供应到微流体系统中; 以及将所述微流体系统中的所述场笼(1',1“)与所提供的所述第二颗粒类型的颗粒(6)以使得所述第一颗粒类型的颗粒(5)和所述第一颗粒类型的颗粒(6) 第二粒子类型存在于至少一个场笼(1',1')中。 本发明还涉及相应的微流体系统。
    • 29. 发明授权
    • Fluidic microsystem comprising field-forming passivation layers provided on microelectrodes
    • 流体微系统包括在微电极上提供的场形成钝化层
    • US07455758B2
    • 2008-11-25
    • US10536674
    • 2003-11-26
    • Torsten MüllerThomas Schnelle
    • Torsten MüllerThomas Schnelle
    • G01N27/447G01N27/453
    • B01L3/502761B01L2200/0647B01L2200/0652B01L2200/0668B01L2300/0645B01L2300/16B01L2400/0415B03C5/026
    • Described is a fluidic microsystem (100) including at least one channel (10) through which a particle suspension can flow; and first and second electrode devices (40, 60) which are arranged on first and second channel walls (21, 31) for generating electrical alternating-voltage fields in the channel (10); wherein the first electrode device (40) for field shaping in the channel includes at least one first structure element (41, 51); and the second electrode device (60) includes an area-like electrode layer (61) with a closed second electrode surface which includes a second passivation layer (70); wherein the effective electrode surface of the first structure element (41, 51), of which element (41, 51) there is at least one, is smaller than the second electrode surface; and the second passivation layer (70) is a closed layer which completely covers the second electrode layer (61).
    • 描述了流体微系统(100),其包括至少一个通道(10),颗粒悬浮液可以通过该通道流动; 以及布置在第一和第二通道壁(21,31)上的用于在通道(10)中产生电气交变电压场的第一和第二电极装置(40,60)。 其中用于所述通道中的场成形的所述第一电极装置(40)包括至少一个第一结构元件(41,51); 并且所述第二电极器件(60)包括具有闭合的第二电极表面的区域状电极层(61),所述第二电极表面包括第二钝化层(70)。 其中,所述元件(41,51)中至少有一个的所述第一结构元件(41,51)的有效电极表面小于所述第二电极表面; 并且所述第二钝化层(70)是完全覆盖所述第二电极层(61)的封闭层。
    • 30. 发明申请
    • Treatment of Biological Samples Using Dielectrophoresis
    • 使用电泳法处理生物样品
    • US20070125650A1
    • 2007-06-07
    • US11531679
    • 2006-09-13
    • Mario ScuratiTorsten MuellerThomas Schnelle
    • Mario ScuratiTorsten MuellerThomas Schnelle
    • B03C5/02
    • B03C5/026
    • A plurality of planar electrodes (5) in a microchannel (4) is used for separation, lysis and PCR in a chip (10). Cells from a sample are brought to the electrodes (5). Depending on sample properties, phase pattern, frequency and voltage of the electrodes and flow velocity are chosen to trap target cells (16) using DEP, whereas the majority of unwanted cells (17) flushes through. After separation the target cell (16) are lysed while still trapped. Lysis is carried out by applying RF pulses and/or thermally so as to change the dielectric properties of the trapped cells. After lysis, the target cells (16) are amplified within the microchannel (4), so as to obtain separation, lysis and PCR on same chip (1).
    • 微通道(4)中的多个平面电极(5)用于芯片(10)中的分离,裂解和PCR。 来自样品的细胞被带到电极(5)。 根据样品性质,选择电极的相图,频率和电压以及流速,以使用DEP捕获靶细胞(16),而大多数不需要的细胞(17)冲洗通过。 分离后,靶细胞(16)裂解,同时仍被捕获。 通过施加RF脉冲和/或热来进行裂解以改变被捕获的细胞的介电性质。 裂解后,在微通道(4)内扩增靶细胞(16),以在同一芯片(1)上获得分离,裂解和PCR。