会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 122. 发明申请
    • Method of Storing GaN Substrate, Stored Substrate, and Semiconductor Device and Method of Its Manufacture
    • 存储GaN衬底,存储衬底和半导体器件的方法及其制造方法
    • US20100326876A1
    • 2010-12-30
    • US12877086
    • 2010-09-07
    • Hideyuki IjiriSeiji Nakahata
    • Hideyuki IjiriSeiji Nakahata
    • B65D90/00
    • H01L33/0075C30B29/406C30B33/00
    • Affords a method of storing GaN substrates from which semiconductor devices of favorable properties can be manufactured, the stored substrates, and semiconductor devices and methods of manufacturing the semiconductor devices. In the GaN substrate storing method, a GaN substrate (1) is stored in an atmosphere having an oxygen concentration of 18 vol. % or less, and/or a water-vapor concentration of 12 g/m3 or less. Surface roughness Ra of a first principal face on, and roughness Ra of a second principal face on, the GaN substrate stored by the storing method are brought to no more than 20 nm and to no more than 20 μm, respectively. In addition, the GaN substrates are rendered such that the principal faces form an off-axis angle with the (0001) plane of from 0.05° to 2° in the direction, and from 0° to 1° in the direction.
    • 提供一种存储可以制造具有良好特性的半导体器件的GaN衬底的方法,存储的衬底以及半导体器件以及制造半导体器件的方法。 在GaN衬底存储方法中,将GaN衬底(1)储存在氧气浓度为18体积%的气氛中。 %以下,和/或12g / m 3以下的水蒸气浓度。 通过存储方法储存的GaN衬底上的第一主面的表面粗糙度Ra和第二主面的粗糙度Ra分别为不大于20nm且不大于20μm。 此外,使GaN基板使得主面与(0001)面在<100°方向上形成从0.05°至2°的偏轴角度,并且在<0001方向上从0°到1°, 11 20>方向。
    • 123. 发明申请
    • GALLIUM NITRIDE CRYSTAL SUBSTRATE AND METHOD OF PRODUCING SAME
    • 氮化铬晶体基板及其制造方法
    • US20090289261A1
    • 2009-11-26
    • US12477642
    • 2009-06-03
    • Fumitaka SATOSeiji Nakahata
    • Fumitaka SATOSeiji Nakahata
    • H01L29/20
    • C30B25/04C30B25/18C30B29/40C30B29/406
    • A low-distortion gallium nitride crystal substrate including low dislocation single crystal regions (Z) having a definite c-axis and a definite a-axis, C-plane growth regions (Y) having a c-axis and a-axis parallel to the c-axis and a-axis of the low dislocation single crystal regions (Z), voluminous defect accumulating regions (H) having a c-axis inverse to the c-axis of the low dislocation single crystal regions (Z) and an a-axis parallel with the a-axis of the low dislocation single crystal regions (Z), and 0.1/cm2 to 10/cm2 c-axis gross core regions (F) containing at least one crystal having a c-axis parallel to the c-axis of the low dislocation single crystal regions (Z) and an a-axis different from the a-axis of the low dislocation single crystal regions (Z).
    • 一种低失真氮化镓晶体基板,包括具有确定的c轴和一定a轴的低位错单晶区域(Z),C平面生长区域(Y)具有平行于 低位错单晶区域(Z)的c轴和a轴,具有与低位错单晶区域(Z)的c轴相反的c轴的大量缺陷积聚区域(H) 轴向与低位错单晶区域(Z)的a轴平行,以及包含至少一个c轴平行于c-轴的晶体的0.1 / cm 2至10 / cm 2的c轴总芯区域(F) 低位错单晶区域(Z)的轴线和与低位错单晶区域(Z)的a轴不同的a轴。
    • 124. 发明申请
    • III Nitride Single Crystal and Method of Manufacturing Semiconductor Device Incorporating the III Nitride Single Crystal
    • III型氮化物单晶及其制造方法制造的III型氮化物单晶的半导体器件
    • US20090197398A1
    • 2009-08-06
    • US12419310
    • 2009-04-07
    • Seiji Nakahata
    • Seiji Nakahata
    • H01L21/20B32B9/00
    • C30B19/04C30B7/00C30B7/005C30B9/06C30B13/02C30B29/403
    • A III nitride single-crystal manufacturing method in which a liquid layer (3) of 200 μm or less thickness is formed in between a substrate (1) and a III nitride source-material baseplate (2), and III nitride single crystal (4) is grown onto the face (1s) on the liquid-layer side of the substrate (1). Herein, the substrate (1) in at least a superficial layer (1a) on the liquid-layer side may be formed of a III nitride single crystal, while the III nitride source-material baseplate (2) can be formed of a III nitride polycrystal. Further, the substrate (1) in at least a superficial layer (1a) on the liquid-layer side, and the III nitride source-material baseplate (2) can be formed of a III nitride single crystal, while the face (1s) on the liquid-layer side of the substrate (1) can be made a III-atom surface, and the face (2s) on the liquid-layer side of the III nitride source-material baseplate (2) can be made a nitrogen-atom surface.
    • 在基板(1)和III族氮化物源材料基板(2)之间形成厚度为200μm以下的液体层(3)和III族氮化物单晶(4)的III族氮化物单晶体制造方法 )生长在基板(1)的液体层侧的面(1s)上。 这里,液面侧的至少表面层(1a)中的基板(1)可以由III族氮化物单晶形成,而III族氮化物源材料基板(2)可以由III族氮化物 多晶体 此外,液面层至少表层(1a)中的基板(1)和III族氮化物源材料基板(2)可以由III族氮化物单晶形成,而面(1s) 可以在基板(1)的液面侧形成III原子表面,并且可以将III族氮化物源材料基板(2)的液体层侧的面(2s) 原子表面。
    • 125. 发明授权
    • Gallium nitride crystal substrate and method of producing same
    • 氮化镓晶体基板及其制造方法
    • US07556687B2
    • 2009-07-07
    • US11602948
    • 2006-11-22
    • Fumitaka SatoSeiji Nakahata
    • Fumitaka SatoSeiji Nakahata
    • C30B29/38
    • C30B25/04C30B25/18C30B29/40C30B29/406
    • A low-distortion gallium nitride crystal substrate including low dislocation single crystal regions (Z) having a definite c-axis and a definite a-axis, C-plane growth regions (Y) having a c-axis and a-axis parallel to the c-axis and a-axis of the low dislocation single crystal regions (Z), voluminous defect accumulating regions (H) having a c-axis inverse to the c-axis of the low dislocation single crystal regions (Z) and an a-axis parallel with the a-axis of the low dislocation single crystal regions (Z), and 0.1/cm2 to 10/cm2 c-axis gross core regions (F) containing at least one crystal having a c-axis parallel to the c-axis of the low dislocation single crystal regions (Z) and an a-axis different from the a-axis of the low dislocation single crystal regions (Z).
    • 一种低失真氮化镓晶体基板,包括具有确定的c轴和一定a轴的低位错单晶区域(Z),C平面生长区域(Y)具有平行于 低位错单晶区域(Z)的c轴和a轴,具有与低位错单晶区域(Z)的c轴相反的c轴的大量缺陷积聚区域(H) 轴向与低位错单晶区域(Z)的a轴平行,以及包含至少一个c轴平行于c-轴的晶体的0.1 / cm 2至10 / cm 2的c轴总芯区域(F) 低位错单晶区域(Z)的轴线和与低位错单晶区域(Z)的a轴不同的a轴。
    • 128. 发明申请
    • Light emitting device
    • 发光装置
    • US20060054942A1
    • 2006-03-16
    • US10522829
    • 2004-05-31
    • Seiji Nakahata
    • Seiji Nakahata
    • H01L31/112
    • H01L33/20H01L33/24
    • A light emitting device which has increased light emitting amount without changing its size is provided. The light emitting device is characterized in that a semiconductor layer 30 is formed on an uneven surface 1a of an uneven substrate 1. The light emitting device of the invention can be configured such that the uneven substrate and the semiconductor layer are both made of AlxGayIn1-x-yN (0≦x, 0≦y, x+y≦1); each of the planes forming the uneven surface of the uneven substrate has at least one plane index selected from among (11-2L) and (1-10L) in which L represents an integer from 1 to 4; and the angle formed between each of the planes forming the uneven surface of the uneven substrate and the base plane is from 35° to 80°.
    • 提供了不改变其尺寸而增加发光量的发光器件。 发光器件的特征在于,在不平坦衬底1的不平坦表面1a上形成半导体层30.本发明的发光器件可以被构造成使得不平坦衬底和半导体层都由Al 在1-xy N(0 <= x,0 <= y,x + y <= 1)中,x 形成不平坦衬底的不平坦表面的每个平面具有选自(11-2L)和(1-10L)中的至少一个平面指数,其中L表示1至4的整数; 并且形成不平坦基板的不平坦表面的平面和基面之间形成的角度为35°至80°。
    • 129. 发明申请
    • Method of recovering and reproducing substrates and method of producing semiconductor wafers
    • 回收和再生基片的方法及制造半导体晶片的方法
    • US20050037595A1
    • 2005-02-17
    • US10895142
    • 2004-07-21
    • Seiji Nakahata
    • Seiji Nakahata
    • H01L21/02H01L21/20H01L21/30H01L21/46
    • H01L21/02631H01L21/02389H01L21/02425H01L21/02458H01L21/0254H01L21/0262
    • A method of recovering a first substrate, including the steps of: sticking a second substrate on a semiconductor layer epitaxially grown on the first substrate; and separating the semiconductor layer and the first substrate. Furthermore, a method of reproducing a first substrate, including the step of surface processing the first substrate separated. Furthermore, a method of reproducing a first substrate, including the step of homoepitaxially growing the first substrate surface processed. Furthermore, a method of producing a semiconductor wafer, including the step of epitaxially growing a semiconductor layer on a first substrate. Thus a group III nitride or similar, expensive substrate can be used to efficiently and economically, epitaxially grow a group III nitride or similar semiconductor layer.
    • 一种回收第一衬底的方法,包括以下步骤:将第二衬底粘附在在第一衬底上外延生长的半导体层上; 以及分离半导体层和第一基板。 此外,再现第一基板的方法,包括对分离的第一基板进行表面处理的步骤。 此外,再现第一衬底的方法,包括处理的第一衬底表面的同质外延生长步骤。 此外,制造半导体晶片的方法,包括在第一基板上外延生长半导体层的步骤。 因此,可以使用III族氮化物或类似的昂贵的衬底来有效和经济地外延生长III族氮化物或类似的半导体层。
    • 130. 发明授权
    • Ceramics porous body and method of preparing the same
    • 陶瓷多孔体及其制备方法
    • US5618765A
    • 1997-04-08
    • US367220
    • 1995-01-06
    • Hisao TakeuchiSeiji NakahataTakahiro MatsuuraChihiro Kawai
    • Hisao TakeuchiSeiji NakahataTakahiro MatsuuraChihiro Kawai
    • B01D39/20C04B38/00C04B35/58
    • C04B38/00B01D39/2075
    • A ceramics porous body having a high porosity as well as high strength is especially suitable for use as a filter for removing foreign matter from a fluid or as a catalytic carrier. The porous body has a porosity of at least 30% and comprises columnar ceramic grains having an aspect ratio of at least 3. In particular, the porous body comprises Si.sub.3 N.sub.4 grains, of which at least 60% are hexagonal columnar beta-Si.sub.3 N.sub.4 grains. The porous body further comprises at least one compound of a rare earth element in an amount of at least 1 vol.% and not more than 20 vol.% of an oxide of the rare earth element, and optionally at least one compound of elements of the groups IIa and IIIb of the periodic table and transition metal elements in an amount of not more than 5 vol.% of an oxide of each element. A compact of mixed powder obtained by adding the compound powder of the rare earth element to silicon nitride powder is heat treated in a nitrogen atmosphere at a temperature of at least 1500.degree. C., to prepare the silicon nitride ceramic porous body.
    • PCT No.PCT / JP94 / 00803 Sec。 371 1995年1月6日第 102(e)1995年1月6日PCT PCT 1994年5月19日PCT公布。 第WO94 / 27929号公报 日期1994年12月8日具有高孔隙率和高强度的陶瓷多孔体特别适合用作从流体或催化载体中除去异物的过滤器。 多孔体具有至少30%的孔隙率,并且包括纵横比至少为3的柱状陶瓷颗粒。特别地,多孔体包括Si 3 N 4晶粒,其中至少60%是六边形柱状β-Si 3 N 4晶粒。 所述多孔体还包含稀土元素的至少一种化合物,其量为所述稀土元素的氧化物的至少1体积%且不超过20体积%,以及任选的至少一种化合物 周期表的IIa和IIIb族和过渡金属元素的量不超过每种元素氧化物的5体积%。 在氮气氛下,在至少1500℃的温度下,将稀土元素的复合粉末添加到氮化硅粉末中而获得的混合粉末的压块进行热处理,制备氮化硅陶瓷多孔体。