会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • FUEL CELL SYSTEM AND METHOD OF CONTROLLING A FUEL CELL SYSTEM
    • 燃料电池系统和控制燃料电池系统的方法
    • US20110008695A1
    • 2011-01-13
    • US12918005
    • 2009-02-10
    • Go TejimaToshiyuki Kondo
    • Go TejimaToshiyuki Kondo
    • H01M8/04
    • H01M8/04268H01M8/0267H01M8/04029H01M8/04074H01M8/04179H01M8/04253H01M8/043H01M8/0432H01M8/04753H01M8/241H01M8/2457H01M2008/1095
    • If subsequent to discontinuing generation by the fuel cell stack it is predicted that evolved water formed by electrochemical reaction of a fuel gas and an oxidant gas during generation may freeze in the membrane-electrode assembly provided to the fuel cell stack, low-level generation (temperature gradient formation control) is carried out until the temperature of the membrane-electrode assembly is relatively higher than the temperature of the separators. This temperature gradient formation control is carried out only for the time period necessary to produce a temperature gradient between the membrane-electrode assembly and the separators, and is quickly discontinued once a temperature gradient is created between the membrane-electrode assembly and the separators. Thus, in a fuel cell system equipped with a fuel cell, reduced energy efficiency of the fuel cell system may be avoided, and low temperature startup may be improved.
    • 如果随后由燃料电池堆停止生成,则预测在生成期间由燃料气体和氧化剂气体的电化学反应形成的放出的水可能在提供给燃料电池堆的膜电极组件中冻结,低级发电( 温度梯度形成控制),直到膜 - 电极组件的温度相对高于分离器的温度。 这种温度梯度形成控制仅在膜 - 电极组件和分离器之间产生温度梯度所需的时间段进行,并且一旦在膜 - 电极组件和分离器之间产生温度梯度,就快速停止。 因此,在配备有燃料电池的燃料电池系统中,可以避免燃料电池系统的能量效率降低,可以提高低温启动。
    • 5. 发明授权
    • Fuel cell vehicle
    • 燃料电池车
    • US07703564B2
    • 2010-04-27
    • US11588377
    • 2006-10-27
    • Toshiyuki Kondo
    • Toshiyuki Kondo
    • B60K1/00
    • B60K1/00B60K1/04B60K15/063B60K15/07B60K17/356B60K2001/005B60K2001/0411B60K2015/0638
    • In a fuel cell vehicle 10 of the invention, fuel cells 20 are integrally placed in a lower space 15 of a front seat 14, while a secondary battery 40 is integrally placed in a lower space 18 of a rear seat 17. The integral arrangements of the fuel cells 20 and the secondary battery 40 separately in the lower space 15 of the front seat 14 and in the lower space 18 of the rear seat 17 ensure high-performance operations of both the fuel cells 20 and the secondary battery 40 having different working environments. This arrangement also attains the effective use of the generally-dead, lower spaces 15 and 18 of the front and rear seats 14 and 17 to receive the fuel cells 20, the secondary battery 40, and their peripheral equipment.
    • 在本发明的燃料电池车辆10中,将燃料电池20一体地放置在前座14的下部空间15中,同时将二次电池40一体地配置在后座17的下部空间18中。 燃料电池20和二次电池40分别在前座14的下部空间15和后座17的下部空间18中确保具有不同工作的两个燃料电池20和二次电池40的高性能操作 环境。 这种布置还可以有效地利用前排座椅14和后座椅17的大致死的较低空间15和18来容纳燃料电池20,二次电池40及其外围设备。
    • 8. 发明授权
    • Semiconductor device and method of fabricating the same
    • 半导体装置及其制造方法
    • US07429762B2
    • 2008-09-30
    • US11030099
    • 2005-01-07
    • Katsumasa HayashiToshiyuki Kondo
    • Katsumasa HayashiToshiyuki Kondo
    • H01L29/40
    • H01L27/11G11C11/412H01L27/1104
    • A semiconductor device includes a semiconductor substrate, first and second CMOS inverter circuits formed on the semiconductor substrate and constituting an SRAM memory cell, each inverter circuit having input and output terminals, and first and second resistance elements formed in the semiconductor substrate and having respective one ends connected to a gate electrode pattern serving as input terminals of the first and second CMOS inverter circuits and the respective other ends connected to electrodes serving as output terminals of the first and second CMOS inverter circuits. The gate electrode pattern includes an underside on which a gate insulation film is formed, the gate insulation film being located between the semiconductor substrate and the gate electrode pattern and having an opening. The first and second resistance elements include respective portions adjacent to the gate electrode pattern, at which portions the first and second resistance elements are electrically connected via the opening to the gate electrode pattern located over the opening.
    • 半导体器件包括半导体衬底,形成在半导体衬底上并构成SRAM存储单元的第一和第二CMOS反相器电路,每个反相器电路具有输入和输出端子,以及形成在半导体衬底中的第一和第二电阻元件, 端子连接到用作第一和第二CMOS反相器电路的输入端的栅极电极图案,并且相应的另一端连接到用作第一和第二CMOS反相器电路的输出端子的电极。 栅极电极图案包括其上形成有栅极绝缘膜的下侧,栅极绝缘膜位于半导体衬底和栅电极图案之间并具有开口。 第一和第二电阻元件包括与栅极电极图案相邻的各个部分,第一和第二电阻元件通过开口电连接到位于开口上方的栅极电极图案的部分。
    • 10. 发明申请
    • Gas processing device
    • 气体处理装置
    • US20070053237A1
    • 2007-03-08
    • US10572365
    • 2004-10-25
    • Naohiro YoshidaToshiyuki Kondo
    • Naohiro YoshidaToshiyuki Kondo
    • B01F15/00H01M8/04
    • B01F5/0695B01F3/02B01F5/0068B01F5/0451B01F5/0453B01F5/0463B01F5/0646B01F5/0647B01F5/0697B01F2215/0098H01M8/04089H01M8/04231
    • An object of the present invention is to provide a gas processing device capable of mixing together a plurality of gases sufficiently so that the gases are diluted. A gas processing device for mixing a first gas (H2) and a second gas (air) comprises a flow passage (110) through which the second gas (air) passes, an inflow port (104) for introducing the first gas (H2) in a non-parallel direction to the flow direction of the second gas (air) within the flow passage (110), and a housing (101) for sealing a part of the flow passage (110). The flow passage (110) comprises hole structures (111), through which the second gas (air) and first gas (H2) pass in and out, in at least a part of the region sealed by the housing (101). According to this constitution, the hole structures generate turbulence, and hence the degree of mixing between the first gas (H2) and second gas (air) can be improved, enabling a uniform reduction in the gas concentration.
    • 本发明的目的是提供一种气体处理装置,其能够充分混合多个气体,使得气体被稀释。 用于混合第一气体(H2)和第二气体(空气)的气体处理装置包括第二气体(空气)通过的流路(110),用于引入第一气体(H2)的流入口(104) 在与流路(110)内的第二气体(空气)的流动方向不平行的方向上,以及用于密封流路(110)的一部分的壳体(101)。 流动通道(110)包括孔结构(111),在由壳体(101)密封的区域的至少一部分中,第二气体(空气)和第一气体(H2)穿过该孔结构111。 根据该结构,孔结构产生湍流,因此能够提高第一气体(H2)和第二气体(空气)之间的混合度,能够均匀地降低气体浓度。