会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Chemical sensing trench field effect transistor and method for same
    • 化学感应沟槽场效应晶体管及其方法相同
    • US5892252A
    • 1999-04-06
    • US18976
    • 1998-02-05
    • Jonathan H. HammondYoung Sir Chung
    • Jonathan H. HammondYoung Sir Chung
    • G01N27/414H01L23/58
    • G01N27/414
    • A field effect transistor (10) for chemical sensing by measuring a change in a surface potential of a gate electrode (48) due to exposure to a fluid has a semiconductor substrate (12) with a trench (18,20). The trench has a first sidewall (30) and a second sidewall (32) disposed opposite the first sidewall to provide a fluid gap (50) for the fluid to be sensed. The gate electrode is disposed overlying the first sidewall of the trench, and a source region (54) and a drain region (56) are disposed in the second sidewall of the trench. A channel region (52) is disposed between the source and drain regions, and the gate electrode is disposed opposite the first channel region across the fluid gap. A heater (26) for regulating the temperature of the gate electrode is disposed in the first sidewall of the trench.
    • 用于通过测量由于暴露于流体而导致的栅电极(48)的表面电位变化的用于化学感测的场效应晶体管(10)具有具有沟槽(18,20)的半导体衬底(12)。 沟槽具有与第一侧壁相对设置的第一侧壁(30)和第二侧壁(32),以提供待感测流体的流体间隙(50)。 栅电极设置在沟槽的第一侧壁上方,并且源区(54)和漏区(56)设置在沟槽的第二侧壁中。 沟道区域(52)设置在源极区域和漏极区域之间,并且栅极电极与穿过流体间隙的第一沟道区域相对设置。 用于调节栅电极的温度的加热器(26)设置在沟槽的第一侧壁中。
    • 2. 发明授权
    • Chemical sensing trench field effect transistor
    • 化学感应沟槽场效应晶体管
    • US5747839A
    • 1998-05-05
    • US720513
    • 1996-09-30
    • Jonathan H. HammondYoung Sir Chung
    • Jonathan H. HammondYoung Sir Chung
    • G01N27/414H01L23/58
    • G01N27/414
    • A field effect transistor (10) for chemical sensing by measuring a change in a surface potential of a gate electrode (48) due to exposure to a fluid has a semiconductor substrate (12) with a trench (18, 20). The trench has a first sidewall (30) and a second sidewall (32) disposed opposite the first sidewall to provide a fluid gap (50) for the fluid to be sensed. The gate electrode is disposed overlying the first sidewall of the trench, and a source region (54) and a drain region (56) are disposed in the second sidewall of the trench. A channel region (52) is disposed between the source and drain regions, and the gate electrode is disposed opposite the first channel region across the fluid gap. A heater (26) for regulating the temperature of the gate electrode is disposed in the first sidewall of the trench.
    • 用于通过测量由于暴露于流体而导致的栅电极(48)的表面电位变化的用于化学感测的场效应晶体管(10)具有具有沟槽(18,20)的半导体衬底(12)。 沟槽具有与第一侧壁相对设置的第一侧壁(30)和第二侧壁(32),以提供待感测流体的流体间隙(50)。 栅电极设置在沟槽的第一侧壁上方,并且源区(54)和漏区(56)设置在沟槽的第二侧壁中。 沟道区域(52)设置在源极区域和漏极区域之间,并且栅极电极与穿过流体间隙的第一沟道区域相对设置。 用于调节栅电极的温度的加热器(26)设置在沟槽的第一侧壁中。
    • 4. 发明授权
    • MEM structure having reduced spring stiction
    • 具有降低的弹性粘度的MEM结构
    • US07000473B2
    • 2006-02-21
    • US10828042
    • 2004-04-20
    • Jan E. VandemeerBishnu P. GogoiJonathan H. Hammond
    • Jan E. VandemeerBishnu P. GogoiJonathan H. Hammond
    • G01P15/125
    • B81B3/001B81B2201/0235G01P15/08G01P15/125
    • A micro-electromechanical (MEM) device has a folded tether spring in which each fold of the spring is surrounded by a rigidly fixed inner structure and outer structure. The fixed inner structure increases restoring force of the spring. The rigidly fixed inner and outer structures each have a major surface that include a plurality of notches of fixed width relative to a distance between the major surface and the spring. Additionally in one form extensions from the major surface of the rigidly fixed inner and outer structures are provided at distal ends thereof to make initial contact with the spring. The notches of the MEM device both reduce surface area contact with the spring and wick moisture away from the spring to minimize stiction.
    • 微机电(MEM)装置具有折叠的系绳弹簧,弹簧的每个折叠由刚性固定的内部结构和外部结构包围。 固定的内部结构增加了弹簧的恢复力。 刚性固定的内外结构各自具有主表面,该主表面包括相对于主表面和弹簧之间的距离具有固定宽度的多个凹口。 此外,在一个形式中,刚性固定的内外结构的主表面的延伸部设置在其远端处以与弹簧初始接触。 MEM器件的凹口都减少了与弹簧的表面积接触,并使芯吸湿度远离弹簧以最小化粘性。