会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 人工智能 / 状态空间 / 一种批次注塑过程抗干扰的混杂稳定控制器设计方法

一种批次注塑过程抗干扰的混杂稳定控制器设计方法

阅读:1055发布:2020-08-18

IPRDB可以提供一种批次注塑过程抗干扰的混杂稳定控制器设计方法专利检索,专利查询,专利分析的服务。并且本发明提供一种批次注塑过程的混杂稳定控制器设计方法,该方法首先通过采集输入输出数据建立不同阶段输入输出模型,同时模型建立考虑了干扰,再选取合适的状态变量建立多阶段状态空间模型,进一步将状态空间模型转换为包含状态变量和输出跟踪误差的扩展状态空间模型,并用不确定切换系统模型表示,然后针对不同阶段选取包含终端状态的性能指标设计控制器。利用该方法可有效改善批次过程跟踪性能和抗干扰性,缩短了系统每一个阶段的运行时间,实现系统在受控对象模型失配和扰动条件下仍具有良好的控制效果及提高了生产效率。,下面是一种批次注塑过程抗干扰的混杂稳定控制器设计方法专利的具体信息内容。

1.一种批次注塑过程抗干扰的混杂稳定控制器设计方法,其特征在于,包括以下步骤:步骤1、针对批次过程中不同阶段,建立被控对象的以状态空间模型为基础的不确定切换系统模型,具体是:

1.1首先采集批次过程的输入输出数据,利用该数据建立批次过程相应阶段的具有过程不确定性的实际过程模型,形式如下:其中,yi(z),ui(z)分别是yi(k),ui(k)的z变换, 为不确定性系统矩阵;

1.2将步骤1.1中的模型进一步处理,引进Δ是差分算子,yi(k)∈R,ui(k)∈R分别为k时刻第i阶段的输出和输入变量;得到误差模型:其中, 分别是第i阶段输入输出的模型参数,是模型参数扰动,m,n分别是输入输出的模型阶次;

并选取非最小状态空间变量Δx0i(k)T,形式如下:Δx0i(k)T=[Δyi(k)T,Δyi(k-1)T,…,Δyi(k-n+1)T,Δui(k-1)T,Δui(k-2)T,…,Δui(k-m+1)T]其中,Δx0i(k)的维数为(m-1)×p+n×q,p为输入变量的维数,q为输出变量的维数,T为矩阵转置符号;

1.3定义输出跟踪误差ei(k),形式如下:ei(k)=yi(k)-ri(k)其中,ri(k)为k时刻第i阶段的期望输出;

1.4选取新的状态变量,进一步扩展模型得到新的非最小实现扩展状态空间模型,使其包含状态变量和输出跟踪误差,得到如下不确定性增广控制系统:zi(k+1)=(Ai+ΔAi)zi(k)+BiΔui(k)其中,

矩阵中的0表示零矩阵;

1.5将上述不确定系统再现为切换系统模型为:z(k+1)=(Aσ(k)+ΔAσ(k))z(k)+Bσ(k)Δu(k).

其中,σ(k):Z+→N:={1,2,…,N}表示的是切换信号,它可能与时间或系统状态相关,N是子系统的阶段数,切换序列定义为S:={T0,T1,T2,...,Tt,...};所有连续间断的时间间隔满足Tt+1-Tt≥τi,t=0,1,2,...,;Tt代表第t个切换时刻,T0是初始时间,在不确定干扰存在的情况下,时间间隔τi可能会延长;τi为不同阶段的驻留时间并且它的取值依赖于李雅普诺夫函数;Aσ(k),ΔAσ(k),Bσ(k)对于不同阶段上式模型1.4表示;

步骤2.设计被控对象的批次过程混杂控制器,具体方法是:

2.1考虑含自由终端状态的非最小实现不同阶段扩展状态空间模型,选取相应的性能指标形式如下:其中,Qi,Ri, 分别表示第i阶段状态变量、被控输入和终端状态的权矩阵,为滚动优化时域; 分别为第i阶段始端和终端时刻;

2.2考虑滚动时域控制,形式如下:Δui(k)=-Kizi(k)

其中,Ki为状态反馈系数矩阵;

上一步可整理得到:

z(k+1)=(Ai-BiKi)z(k)+ΔAiz(k)

2.3定义稳定性函数Vi,并获得其增量ΔVi,形式如下:i i i T i T i

ΔV(z(k))=V(z(k+1))-V(z(k))=z(k+1) P(k+1)z(k+1)-z(k) P(k)z(k)结合步骤1.4,进一步转化为:

其中,ΔVi(z(k))<0,Pi(k)为对称正定矩阵,且

2.4根据步骤1.5中的不确定闭环控制系统,并结合步骤2.3中的稳定性函数,求取控制器的参数即状态反馈系数矩阵Ki;

2.4.1选取合适的矩阵,使其满足如下形式:并满足如下约束条件:

其中, 分别是矩阵ξ的最大奇异值、最小特征值和最大特征值;

2.4.2再选取合适的矩阵,使其满足如下等式和约束条件:

2.4.3进一步将步骤2.4.1和步骤2.4.2中约束条件整理可得:

2.5结合步骤2.2和步骤2.4求得控制器的参数,形式如下:

2.6将步骤2.5中得到的如下的控制量ui(k)作用于被控对象:ui(k)=Δui(k)+ui(k-1)i

2.7在下一时刻,重复步骤2.4到2.5继续求解新的控制量u(k+1),并依次循环;

2.8针对不同阶段设计切换信号为σ(k);

2.8.1由步骤2.2中滚动时域控制形式可再次表示为:Δui(k)=-Kizi(k)

其中,

则对每一个阶段i,切换系统可变为:z(k+1)=(Ai+ΔAi-BiKi)z(k)

2.8.2对于第i个子系统,选择下面的李雅普诺夫函数:Vi(k)=zT(k)Pi(k)z(k)其中,Pi(k),i∈N,N:={1,2,…,N}是依赖于驻留时间τi的矩阵;则:若切换系统稳定,必有ΔVi(k)<0,其等价于:结合步骤2.4-2.5,求解上述不等式,便可求出不同阶段的τi。

说明书全文

一种批次注塑过程抗干扰的混杂稳定控制器设计方法

技术领域

[0001] 本发明属于工业过程的先进控制领域,涉及一种批次注塑过程抗干扰的混杂稳定控制器设计方法。

背景技术

[0002] 注塑成型过程广泛应用在塑料加工等相关领域,虽然对于注塑成型过程已有部分研究,但在现代塑料加工的高精控制方面仍然是一个挑战。主要原因在于其复杂的动态特性,以及多变的工艺条件。注塑成型过程是典型的多阶段间歇过程,每一批次主要包括注射和保压两个阶段,在注射段和保压段需要控制的变量分别是注射速度和保压压力,两个不同阶段控制的变量不同,控制目标不同,何时从一个阶段切换至另一阶段,且每一阶段运行时间的长短,直接影响生产效率和产品质量。显然,针对这样的生产过程设计高精控制器及相邻阶段的切换条件以及求出每一阶段的运行时间,将至关重要。
[0003] 目前针对单一阶段的高精控制已经成熟,但单一过程不涉及切换条件,也不会涉及运行时间。针对多阶段尽管也有一定的研究成果,但是在整个过程中控制器增益不能调节,即使有控制器增益不能调节成果,但是并没有考虑运行时间问题。而在实际工业控制中,由于实际工况存在漂移、过程非线性及系统外部干扰等因素,控制系统在运行一段时间后其控制性能可能下降,在每一阶段的运行时间可能会延长。如果不及时设计切换信号及修复控制器以改善控制品质,将降低控制系统所获得的经济效益。
[0004] 因此,为解决多阶段滚动时域控制中模型失配和干扰的问题,对未知扰动下的批处理过程,增加参数调节的自由度,并保证系统的控制性能,缩短每一阶段的运行时间,且在干扰值最大的情况下,保证系统的稳定,提高控制精度从而提高生产效率及产品质量,提出一种更加有效的控制办法极为必要。

发明内容

[0005] 本发明针对注塑过程需控制的两个重要阶段注射段和保压段,设计其切换条件以至求出运行时间,实现其高效生产。设计一个稳定的控制器,使得系统在其模型失配且在干扰最大的情况下,依然稳定运行,并实现更好的控制性能。
[0006] 本发明目的一是寻求批次注塑过程不同阶段合适的切换条件、运行时间;二是为改善批次过程中控制方法的跟踪性能和抗干扰性,提出批次注塑过程的混杂稳定控制器设计方法。该方法首先通过采集输入输出数据建立不同阶段输入输出模型,同时模型建立考虑了干扰,再选取合适的状态变量建立多阶段状态空间模型,进一步将状态空间模型转换为包含状态变量和输出跟踪误差的扩展状态空间模型,并用不确定切换系统模型表示,然后针对不同阶段选取包含终端状态的性能指标设计控制器。此控制律通过增加可调节的加权系数,调节更为灵活,能适时地抗干扰,并在干扰最大的情况下实现系统稳定。不同于传统的状态空间模型,所提方法的新模型同时考虑了状态变量和跟踪误差。在新设计模型的基础上,通过增加可调节的加权系数,调节更为灵活,并保证系统获得了更好的控制性能。最后针对不同阶段,设计依赖于Lyapunov函数的驻留时间方法,得出的系统稳定是指数稳定,此方法得出的结果不需引用任何其它变量,简单易行,同时指数稳定加快了系统收敛速度。因此,此方法不仅保证系统具有最优控制性能的同时,还使得系统运行时间缩短,即提高了生产效率。
[0007] 本发明的技术方案是通过数据采集、模型建立、预测机理、优化等手段,确立了一种批次注塑过程的混杂稳定控制器设计方法,利用该方法可有效改善批次过程跟踪性能和抗干扰性,缩短了系统每一个阶段的运行时间,实现系统在受控对象模型失配和扰动条件下仍具有良好的控制效果及提高了生产效率。
[0008] 本发明是通过以下技术方案实现的:
[0009] 一种批次注塑过程抗干扰的混杂稳定控制器设计方法,包括以下步骤:
[0010] 步骤1、针对批次过程中不同阶段,建立被控对象的以状态空间模型为基础的不确定切换系统模型,具体是:
[0011] 1.1首先采集批次过程的输入输出数据,利用该数据建立批次过程相应阶段的具有过程不确定性的实际过程模型,形式如下:
[0012]
[0013]
[0014]
[0015] 其中,yi(z),ui(z)分别是yi(k),ui(k)的z变换, 为不确定性系统矩阵;
[0016] 1.2将步骤1.1中的模型进一步处理,引进Δ是差分算子,yi(k)∈R,ui(k)∈R分别为k时刻第i阶段的输出和输入变量;得到误差模型:
[0017]
[0018] 其中, 分别是第i阶段输入输出的模型参数,是模型参数扰动,m,n分别是输入输出的模型阶次;
[0019] 并选取非最小状态空间变量Δx0i(k)T,形式如下:
[0020] Δx0i(k)T=[Δyi(k)T,Δyi(k-1)T,…,Δyi(k-n+1)T,Δui(k-1)T,Δui(k-2)T,…,Δui(k-m+1)T]
[0021] 其中,Δx0i(k)的维数为(m-1)×p+n×q,p为输入变量的维数,q为输出变量的维数,T为矩阵转置符号;
[0022] 1.3定义输出跟踪误差ei(k),形式如下:
[0023] ei(k)=yi(k)-ri(k)
[0024] 其中,ri(k)为k时刻第i阶段的期望输出;
[0025] 1.4选取新的状态变量,进一步扩展模型得到新的非最小实现扩展状态空间模型,使其包含状态变量和输出跟踪误差,得到如下不确定性增广控制系统:
[0026] zi(k+1)=(Ai+ΔAi)zi(k)+BiΔui(k)
[0027] 其中,
[0028]
[0029]
[0030]
[0031] 矩阵中的0表示零矩阵;
[0032] 1.5将上述不确定系统再现为切换系统模型为:
[0033] z(k+1)=(Aσ(k)+ΔAσ(k))z(k)+Bσ(k)Δu(k).
[0034] 其中,σ(k):Z+→N:={1,2,…,N}表示的是切换信号,它可能与时间或系统状态相关,N是子系统的阶段数,切换序列定义为S:={T0,T1,T2,...,Tt,...};所有连续间断的时间间隔满足Tt+1-Tt≥τi,t=0,1,2,...,;Tt代表第t个切换时刻,T0是初始时间,在不确定干扰存在的情况下,时间间隔τi可能会延长;τi为不同阶段的驻留时间并且它的取值依赖于李雅普诺夫函数;Aσ(k),ΔAσ(k),Bσ(k)对于不同阶段上式模型1.4表示;
[0035] 步骤2.设计被控对象的批次过程混杂控制器,具体方法是:
[0036] 2.1考虑含自由终端状态的非最小实现不同阶段扩展状态空间模型,选取相应的性能指标形式如下:
[0037]
[0038] 其中,Qi,Ri, 分别表示第i阶段状态变量、被控输入和终端状态的权矩阵,为滚动优化时域; 分别为第i阶段始端和终端时刻;
[0039] 2.2考虑滚动时域控制,形式如下:
[0040] Δui(k)=-Kizi(k)
[0041] 其中,Ki为状态反馈系数矩阵;
[0042] 上一步可整理得到:
[0043] z(k+1)=(Ai-BiKi)z(k)+ΔAiz(k)
[0044] 2.3定义稳定性函数Vi,并获得其增量ΔVi,形式如下:
[0045] ΔVi(z(k))=Vi(z(k+1))-Vi(z(k))=z(k+1)TPi(k+1)z(k+1)-z(k)TPi(k)z(k)[0046] 结合步骤1.4,进一步转化为:
[0047]
[0048]
[0049] 其中,ΔVi(z(k))<0,Pi(k)为对称正定矩阵,
[0050] 且
[0051] 2.4根据步骤1.5中的不确定闭环控制系统,并结合步骤2.3中的稳定性函数,求取控制器的参数即状态反馈系数矩阵Ki;
[0052] 2.4.1选取合适的矩阵,使其满足如下形式:
[0053]
[0054]
[0055]
[0056] 并满足如下约束条件:
[0057]
[0058]
[0059]
[0060] 其中, 分别是矩阵ξ的最大奇异值、最小特征值和最大特征值;
[0061] 2.4.2再选取合适的矩阵,使其满足如下等式和约束条件:
[0062]
[0063]
[0064]
[0065]
[0066]
[0067]
[0068]
[0069] 2.4.3进一步将步骤2.4.1和步骤2.4.2中约束条件整理可得:
[0070]
[0071]
[0072]
[0073]
[0074] 2.5结合步骤2.2和步骤2.4求得控制器的参数,形式如下:
[0075]
[0076]
[0077]
[0078] 2.6将步骤2.5中得到的如下的控制量ui(k)作用于被控对象:
[0079] ui(k)=Δui(k)+ui(k-1)
[0080] 2.7在下一时刻,重复步骤2.4到2.5继续求解新的控制量ui(k+1),并依次循环;
[0081] 2.8针对不同阶段设计切换信号为σ(k);
[0082] 2.8.1由步骤2.2中滚动时域控制形式可再次表示为:
[0083] Δui(k)=-Kizi(k)
[0084] 其中,
[0085] 则对每一个阶段i,切换系统可变为:
[0086] z(k+1)=(Ai+ΔAi-BiKi)z(k)
[0087] 2.8.2对于第i个子系统,选择下面的李雅普诺夫函数:
[0088] Vi(k)=zT(k)Pi(k)z(k)
[0089] 其中,Pi(k),i∈N,N:={1,2,…,N}是依赖于驻留时间τi的矩阵;则:
[0090]
[0091] 若切换系统稳定,必有ΔVi(k)<0,其等价于:
[0092]
[0093]
[0094]
[0095] 结合步骤2.4-2.5,求解上述不等式,便可求出不同阶段的τi。
[0096] 与现有技术相比,本发明的有益效果为:
[0097] 此方法优点是不需要其他参数的设定,直接得值。这个显然优越于其他方法,如平均驻留时间方法,所谓平均驻留时间方法,是指系统在每一个阶段都有驻留时间的平均值。平均驻留时间方法常常阶假定其条件中的某一变量给定,这无疑可能增大某一阶段的运行时间。此外,由此方法得出的系统稳定性判据是指数稳定,这在一定程度上加快了收敛速度,也就是缩短了系统运行时间。因此,此文的方法在确保系统具有最优控制性能的同时,也在保证产品质量的情况下,提高了生产效率。

具体实施方式

[0098] 下面结合具体实施例对本发明做进一步的说明。
[0099] 一种批次注塑过程抗干扰的混杂稳定控制器设计方法,包括以下步骤:
[0100] 步骤1、针对批次过程中不同阶段,建立被控对象的以状态空间模型为基础的不确定切换系统模型,具体是:
[0101] 1.1首先采集批次过程的输入输出数据,利用该数据建立批次过程相应阶段的具有过程不确定性的实际过程模型,形式如下:
[0102]
[0103]
[0104]
[0105] 其中,yi(z),ui(z)分别是yi(k),ui(k)的z变换, 为不确定性系统矩阵;
[0106] 1.2将步骤1.1中的模型进一步处理,引进Δ是差分算子,yi(k)∈R,ui(k)∈R分别为k时刻第i阶段的输出和输入变量;得到误差模型:
[0107]
[0108] 其中, 分别是第i阶段输入输出的模型参数,是模型参数扰动,m,n分别是输入输出的模型阶次;
[0109] 并选取非最小状态空间变量Δx0i(k)T,形式如下:
[0110] Δx0i(k)T=[Δyi(k)T,Δyi(k-1)T,…,Δyi(k-n+1)T,Δui(k-1)T,Δui(k-2)T,…,Δui(k-m+1)T]
[0111] 其中,Δx0i(k)的维数为(m-1)×p+n×q,p为输入变量的维数,q为输出变量的维数,T为矩阵转置符号;
[0112] 1.3定义输出跟踪误差ei(k),形式如下:
[0113] ei(k)=yi(k)-ri(k)
[0114] 其中,ri(k)为k时刻第i阶段的期望输出;
[0115] 1.4选取新的状态变量,进一步扩展模型得到新的非最小实现扩展状态空间模型,使其包含状态变量和输出跟踪误差,得到如下不确定性增广控制系统:
[0116] zi(k+1)=(Ai+ΔAi)zi(k)+BiΔui(k)
[0117] 其中,
[0118]
[0119]
[0120]
[0121] 矩阵中的0表示零矩阵;
[0122] 1.5将上述不确定系统再现为切换系统模型为:
[0123] z(k+1)=(Aσ(k)+ΔAσ(k))z(k)+Bσ(k)Δu(k).
[0124] 其中,σ(k):Z+→N:={1,2,…,N}表示的是切换信号,它可能与时间或系统状态相关,N是子系统的阶段数,切换序列定义为S:={T0,T1,T2,...,Tt,...};所有连续间断的时间间隔满足Tt+1-Tt≥τi,t=0,1,2,...,;Tt代表第t个切换时刻,T0是初始时间,在不确定干i i扰存在的情况下,时间间隔τ可能会延长;τ为不同阶段的驻留时间并且它的取值依赖于李雅普诺夫函数;Aσ(k),ΔAσ(k),Bσ(k)对于不同阶段上式模型1.4表示;
[0125] 步骤2.设计被控对象的批次过程混杂控制器,具体方法是:
[0126] 2.1考虑含自由终端状态的非最小实现不同阶段扩展状态空间模型,选取相应的性能指标形式如下:
[0127]
[0128] 其中,Qi,Ri, 分别表示第i阶段状态变量、被控输入和终端状态的权矩阵,为滚动优化时域; 分别为第i阶段始端和终端时刻;
[0129] 2.2考虑滚动时域控制,形式如下:
[0130] Δui(k)=-Kizi(k)
[0131] 其中,Ki为状态反馈系数矩阵;
[0132] 上一步可整理得到:
[0133] z(k+1)=(Ai-BiKi)z(k)+ΔAiz(k)
[0134] 2.3定义稳定性函数Vi,并获得其增量ΔVi,形式如下:
[0135] ΔVi(z(k))=Vi(z(k+1))-Vi(z(k))=z(k+1)TPi(k+1)z(k+1)-z(k)TPi(k)z(k)[0136] 结合步骤1.4,进一步转化为:
[0137]
[0138]
[0139] 其中,ΔVi(z(k))<0,Pi(k)为对称正定矩阵,
[0140] 且
[0141] 2.4根据步骤1.5中的不确定闭环控制系统,并结合步骤2.3中的稳定性函数,求取控制器的参数即状态反馈系数矩阵Ki;
[0142] 2.4.1选取合适的矩阵,使其满足如下形式:
[0143]
[0144]
[0145]
[0146] 并满足如下约束条件:
[0147]
[0148]
[0149]
[0150] 其中, 分别是矩阵ξ的最大奇异值、最小特征值和最大特征值;
[0151] 2.4.2再选取合适的矩阵,使其满足如下等式和约束条件:
[0152]
[0153]
[0154]
[0155]
[0156]
[0157]
[0158]
[0159] 2.4.3进一步将步骤2.4.1和步骤2.4.2中约束条件整理可得:
[0160]
[0161]
[0162]
[0163]
[0164] 2.5结合步骤2.2和步骤2.4求得控制器的参数,形式如下:
[0165]
[0166]
[0167]
[0168] 2.6将步骤2.5中得到的如下的控制量ui(k)作用于被控对象:
[0169] ui(k)=Δui(k)+ui(k-1)
[0170] 2.7在下一时刻,重复步骤2.4到2.5继续求解新的控制量ui(k+1),并依次循环;
[0171] 2.8针对不同阶段设计切换信号为σ(k);
[0172] 2.8.1由步骤2.2中滚动时域控制形式可再次表示为:
[0173] Δui(k)=-Kizi(k)
[0174] 其中,
[0175] 则对每一个阶段i,切换系统可变为:
[0176] z(k+1)=(Ai+ΔAi-BiKi)z(k)
[0177] 2.8.2对于第i个子系统,选择下面的李雅普诺夫函数:
[0178] Vi(k)=zT(k)Pi(k)z(k)
[0179] 其中,Pi(k),i∈N,N:={1,2,…,N}是依赖于驻留时间τi的矩阵;则:
[0180]
[0181] 若切换系统稳定,必有ΔVi(k)<0,其等价于:
[0182]
[0183]
[0184]
[0185] 结合步骤2.4-2.5,求解上述不等式,便可求出不同阶段的τi。
[0186] 实施例
[0187] 注塑过程是典型的间歇生产过程,每一批次主要包含三个步骤,即注射段→保压段→冷却段。在注射段,螺杆向前运动将储存在机筒前端的熔体(原材料经加热圈加热后形成)向前挤压,流经浇道,流道,浇口,进入已经闭合的模具型腔(模腔)内。当模腔完全充满之后,成型过程由注射段切换至保压段。在保压段中,螺杆以很低的速度向前推进,以保持一定的喷嘴压力。少量的熔体继续进入模腔,补偿由于材料降温和固化造成的体积收缩。一旦模具中截面积最小的浇口基本固化,保压段停止,过程进入冷却段,理想情况下此时熔体流动应停止。注射机构在冷却段进行塑化,为下一个循环做好准备;与此同时,在模腔中的材料继续冷却直至完全固化。最后,模具打开,顶针将制品顶出,完成一个循环。
[0188] 因此,注塑成型过程主要包含注射段、保压段、冷却段三个阶段。注射段、保压段的控制效果对产品最终质量具有直接影响,其中注射段注射速度、保压段模腔压力对相应阶段控制效果影响最大,需要控制跟踪给定值。这两个参数都是由相应的阀门进行控制,阀门开度影响参数。此外,在注射段,模腔压力达到一定值时,过程进入保压段,因而在注射段模腔压力需要被检测但是不需要被直接控制。在冷却段只对高温制成品进行冷却,并不采取控制措施;因而需要建立注塑成型过程注射段与保压段的混杂状态空间模型。
[0189] 此外,注塑过程中不同环节都存在着各种干扰因素。
[0190] 现有的注塑成型过程注射段与保压段的频域数学模型如下:
[0191] 注射段频域数学模型为:
[0192] 保压段频域数学模型为:
[0193] 其中,IV代表注射段注射速度,设定值为40mm/s;NP代表模腔压力,在保压段设定值为300bar;VO代表阀门开度。
[0194] 利用步骤1将注塑成型过程的两个阶段输入输出模型改写为等价切换系统增广模型如下:
[0195] z(k+1)=(Aσ(k)+ΔAσ(k))z(k)+Bσ(k)Δu(k)
[0196] 定义注射段为阶段1,保压段为阶段2,即σ(t,k)=1,σ(t,k)=2分别表示阶段1,阶段2。
[0197] 利用步骤2,根据不同阶段设计出相应可实时灵活调节的控制器,以提高其控制品质,解决了已存在方法中整个过程中控制器增益不能调节的弊端。最后针对不同阶段,设计依赖于Lyapunov函数的驻留时间方法,得出的系统稳定是指数稳定,此方法得出的结果不需引用任何其它变量,简单易行,同时指数稳定加快了系统收敛速度。不仅保证系统稳定运行且具有最优控制性能的同时,还使得系统运行时间缩短,即提高了生产效率。批次注塑过程的混杂稳定控制器的设计,解决了多阶段滚动时域控制中模型失配和干扰的问题,对未知扰动下的批处理过程,增加参数调节的自由度,并保证系统的控制性能,缩短每一阶段的运行时间,且在干扰值最大的情况下,保证系统的稳定,提高控制精度从而提高生产效率及产品质量。
高效检索全球专利

IPRDB是专利检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,专利查询、专利分析

电话:13651749426

侵权分析

IPRDB的侵权分析产品是IPRDB结合多位一线专利维权律师和专利侵权分析师的智慧,开发出来的一款特色产品,也是市面上唯一一款帮助企业研发人员、科研工作者、专利律师、专利分析师快速定位侵权分析的产品,极大的减少了用户重复工作量,提升工作效率,降低无效或侵权分析的准入门槛。

立即试用