会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • METHOD OF FILTERING BINARY DATA
    • 滤除二值数据的方法
    • WO2005069491A3
    • 2005-08-25
    • PCT/IT2005000022
    • 2005-01-18
    • ATOP INNOVATION SPACARABINIERE LUIGI
    • CARABINIERE LUIGI
    • G06T9/00G10L19/04H03H21/00H03M7/30H04N1/417
    • H03H21/0043
    • The present invention concerns a method of filtering an input binary string W for obtaining an output binary string Y, the method being characterised in that it comprises, for each one of one or more first substrings wj having nj bits at least partially belonging to the input string W, the following steps: A. calculating K prediction substrings ujx, with K>=2, through K operations of multiplication of the first considered substring wj by K functions fk; B. having a second substring wj+1, comprising nj+1 bits at least partially belonging to the input string W; C. calculating, for each one of the K prediction substrings ujk, a corresponding distance Dj+l,k indicative of the deviation of the second substring wj+1 from the prediction substring ujk; D. selecting the function fkDHmin of the K functions fk having the mìnimum distance Dj+1,k from the substring wj+1; and E. inserting a substring yj equal to the prediction substring ujkDHmin generated by the function fkDHmin selected in step D ìnto the output string Y. The present invention further concerns the corresponding defiltering method, and the apparatuses and instruments necessary for performing the method.
    • 本发明涉及一种对输入二进制串W进行滤波以获得输出二进制串Y的方法,该方法的特征在于,对于一​​个或多个第一子串wj中的每一个具有至少部分属于输入的nj个比特 字符串W执行以下步骤:A.通过将第一个考虑的子串wj乘以K个函数fk的K次运算,计算K个预测子串ujx,其中K> = 2; B.具有第二子串wj + 1,包括至少部分属于输入串W的nj + 1个比特; C.针对K个预测子串ujk中的每一个,计算指示第二子串wj + 1与预测子串ujk的偏差的对应距离Dj + 1,k; D.从子串wj + 1中选择具有最小距离Dj + 1,k的K个函数fk的函数fkDHmin; 以及E.将等于由在步骤D中选择的函数fkDHmin生成的预测子串ujkDHmin的子串yj插入到输出串Y中。本发明还涉及相应的去除过滤方法以及执行该方法所需的设备和仪器。
    • 4. 发明申请
    • METHOD OF FILTERING BINARY DATA
    • 滤波二进制数据的方法
    • WO2005069491A2
    • 2005-07-28
    • PCT/IT2005/000022
    • 2005-01-18
    • ATOP INNOVATION S.P.A.CARABINIERE, Luigi
    • CARABINIERE, Luigi
    • H03M7/00
    • H03H21/0043
    • The present invention concerns a method of filtering an input binary string W for obtaining an output binary string Y, the method being characterised in that it comprises, for each one of one or more first substrings wj having nj bits at least partially belonging to the input string W, the following steps: A. calculating K prediction substrings ujx, with K≥2, through K operations of multiplication of the first considered substring wj by K functions f k ; B. having a second substring wj+1, comprising n j +1 bits at least partially belonging to the input string W; C. calculating, for each one of the K prediction substrings u jk , a corresponding distance D j +l,k indicative of the deviation of the second substring wj+1 from the prediction substring u jk ; D. selecting the function fkDHmin of the K functions f k having the mìnimum distance Dj+1,k from the substring wj+1; and E. inserting a substring y j equal to the prediction substring u jkDHmin generated by the function fkDHmin selected in step D ìnto the output string Y . The present invention further concerns the corresponding defiltering method, and the apparatuses and instruments necessary for performing the method.
    • 本发明涉及一种过滤输入二进制串W以获得输出二进制串Y的方法,该方法的特征在于,对于具有至少部分属于输入的nj个比特的一个或多个第一子串wj中的每一个, 字符串W,以下步骤:A.计算K个预测子串ujx,其中K> = 2,通过K运算将第一个考虑的子串wj乘以K个函数fk; B.具有第二子串wj + 1,包括至少部分属于输入串W的nj + 1位; C.计算K个预测子串ujk中的每一个,表示第二子串wj + 1与预测子串ujk的偏差的相应距离Dj + 1,k; D.从子串wj + 1中选择具有最小距离Dj + 1,k的K个函数fk的函数fkDHmin; 和E.插入等于在步骤D中选择的函数fkDHmin生成的预测子串ujkDHmin的子串yj到输出字符串Y.本发明还涉及相应的去过滤方法以及执行该方法所需的装置和仪器。
    • 6. 发明申请
    • CHANNEL ESTIMATION ENHANCED LMS EQUALIZER
    • 信道估计增强LMS均衡器
    • WO2006101997A2
    • 2006-09-28
    • PCT/US2006/009556
    • 2006-03-16
    • INTERDIGITAL TECHNOLOGY CORPORATIONPIETRASKI, Philip, J.
    • PIETRASKI, Philip, J.
    • H03H7/40H03D1/04
    • H03H21/0043H03H2021/0056H04L25/0226H04L25/03019H04L2025/03496H04L2025/03611
    • The present invention is related to an enhanced equalizer using channel estimation. A scaled version of a channel estimate is used as an expected average behavior of the product of a transmitted signal and a received signal to implement Griffith algorithm. The present invention also uses advance or prediction of a channel estimate to overcome the lag problem inherent in a least means square (LMS) algorithm in a time varying channel. Therefore, the present invention enables the use of a small step size while attaining the same tracking capability with a large step size. A channel estimate at some time in the future is used for updating equalizer filter tap coefficients. This may be performed with a prediction filter. Alternatively, a delay may be introduced in the input data to the filter tap coefficient generator, which makes a channel estimate look like a prediction to the filter tap coefficient generator.
    • 本发明涉及使用信道估计的增强均衡器。 信道估计的缩放版本被用作发射信号和接收信号的乘积的预期平均行为以实现Griffith算法。 本发明还使用信道估计的提前或预测来克服时变信道中最小均方(LMS)算法中固有的滞后问题。 因此,本发明能够在以大的步长获得相同的跟踪能力的同时使用小的步长。 将来某个时间的信道估计用于更新均衡器滤波器抽头系数。 这可以用预测滤波器来执行。 或者,可以将输入数据中的延迟引入到滤波器抽头系数发生器,这使得信道估计看起来像滤波器抽头系数发生器的预测。
    • 9. 发明申请
    • INITIALIZATION/PREWINDOWING REMOVAL POSTPROCESSING FOR FAST RLS FILTER ADAPTATION
    • 用于快速RLS滤波器适配的初始化/去除移除POSPOROCESS
    • WO01082474A2
    • 2001-11-01
    • PCT/US2001/011724
    • 2001-04-19
    • H03H21/00H03H
    • H03H21/0043H03H2021/0049
    • The present invention, generally speaking, accelerates convergence of a fast RLS adaptation algorithm by, following processing of a burst of data, performing postprocessing to remove the effects of prewindowing, fictitious data initialization, or both. This postprocessing is part of a burst mode adaptation strategy in which data (signals) get processed in chunks (bursts). Such a burst mode processing approach is applicable whenever the continuous adaptation of the filter is not possible (algorithmic complexity too high to run in real time) or not required (optimal filter setting varies only slowly with time). Postprocessing consists of a series of "downdating" operations (as opposed to updating) that in effect advance the beginning point of the data window. The beginning point is advanced beyond fictitious data used for initialization and beyond a prewindowing region. In other variations, downdating is applied to data within a prewindowing region only. The forgetting factor of conventional algorithms can be eliminated entirely. Performance equivalent to that of GWC RLS algorithms is achieved at substantially lower computational cost. In particular, a postprocessing Fast Kalman Algorithm in effect transforms an initialized/prewindowed least squares estimate into a Covariance Window least squares estimate. Various further refinements are possible. Initialization may be cancelled completely or only partially. For example, in order to reduce the dynamic range of algorithmic quantities, it may be advantageous to, in a subsequent initialization, add an increment to a forward error energy quantity calculated during a previous burst. Postprocessing may then be performed to cancel only the added increment. Also, to reduce the usual large startup error transient, the desired response data can be modified in a way that dampens the error transient. The modified desired response data are saved for use in later postprocessing. Furthermore, to allow for more rapid adaptation without the use of an exponential forgetting factor, a weighting factor less than one may be applied to the forward error energy quantity during initialization from one burst to the next. This allows for the most efficient use of data but limited adaptation within a burst, but more rapid adaptation from one burst to the next.
    • 一般而言,本发明通过在数据突发的处理之后加速快速RLS自适应算法的收敛,执行后处理以去除预窗口化,虚拟数据初始化或两者的影响。 该后处理是突发模式适应策略的一部分,其中数据(信号)以块(突发)进行处理。 只要滤波器的连续自适应不可能(算法复杂度太高而不能实时运行),或者不需要(优化滤波器设置随时间变化缓慢),这种突发模式处理方法是适用的。 后处理包括一系列“缩减”操作(而不是更新),其实际上提高了数据窗口的起点。 起始点超出用于初始化的虚拟数据,超出了预画面区域。 在其他变体中,只有在预开窗区域内的数据才应用缩减时间。 传统算法的遗忘因素可以完全消除。 性能相当于GWC RLS算法的性能实现在较低的计算成本。 特别地,后处理的快速卡尔曼算法实际上将初始化/预先窗口化的最小二乘估计变换为协方差窗口最小二乘估计。 各种进一步的改进是可能的。 初始化可能会被完全取消或仅部分取消。 例如,为了减少算法量的动态范围,在随后的初始化中可能有利的是将增量添加到在先前突发期间计算出的前向误差能量。 然后可以执行后处理以仅取消添加的增量。 此外,为了减少通常的大的启动错误瞬态,可以以抑制误差瞬变的方式修改所需的响应数据。 修改的所需响应数据被保存以用于稍后的后处理。 此外,为了允许在不使用指数遗忘因子的情况下进行更快速的适应,可以在从一个突发到下一个突发的初始化期间将小于一的加权因子应用于前向误差能量。 这允许最有效地使用数据,但在突发中有限的自适应,但是从一个突发到下一个突发的更快速的适应。