会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • METHOD FOR IDENTIFYING A SPEAKER BASED ON RANDOM SPEECH PHONOGRAMS USING FORMANT EQUALIZATION
    • 基于使用均匀化的随机语音信使识别扬声器的方法
    • WO2011046474A3
    • 2011-06-16
    • PCT/RU2010000661
    • 2010-11-03
    • OBSCHESTVO S OGRANICHENNOI OTVETSTVENNOST YU CENTR RECHEVYH TEHNOLOGIJKOVAL SERGEY LVOVICH
    • KOVAL SERGEY LVOVICH
    • G10L17/00G10L17/02G10L17/06G10L17/20G10L25/15
    • G10L17/14G10L17/02G10L17/06G10L17/20G10L25/15
    • The invention relates to a method for the reliable identification of a speaker based on long or short phonograms, phonograms recorded in different channels with high interference and distortion levels, and phonograms including random speech of narrators under various psycho-physiological conditions and speaking in different languages. The present method can be used in a wide range of applications, including in criminal investigations. The identification of a speaker based on speech phonograms is made by estimating the convergence between a first phonogram of the speaker and a second calibration phonogram. In order to carry out the estimation, the method comprises selecting on the first and second phonograms reference fragments of speech signals containing formant trajectories of at least three formants, comparing the reference fragments in which the values of at least two formant frequencies coincide, estimating the convergence of the compared reference fragments based on the coincidence of the values of the remaining formant frequencies, and determining the convergence of all the phonograms based on the global estimation of the convergence of all the compared reference fragments.
    • 本发明涉及一种用于可靠地识别基于长或短录音的扬声器的方法,记录在具有高干扰和失真水平的不同频道中的录音,以及包括在各种心理生理条件下叙述的讲话者的随机语音的语音和不同语言的语音 。 本方法可广泛应用于刑事调查。 基于语音录音的扬声器的识别是通过估计扬声器的第一个录音和第二个校准录音的收敛来进行的。 为了进行估计,该方法包括在包含至少三个共振峰的共振峰轨迹的语音信号的第一和第二录音参考片段上选择比较至少两个共振峰频率的值相符的参考片段, 基于剩余共振峰频率的值的一致性,比较参考片段的收敛,并且基于所有比较的参考片段的收敛的全局估计来确定所有录音的收敛。
    • 2. 发明申请
    • BIO-PHONETIC MULTI-PHRASE SPEAKER IDENTITY VERIFICATION
    • 生物多媒体多媒体播放器身份验证
    • WO2004075166A2
    • 2004-09-02
    • PCT/US2004/002116
    • 2004-01-26
    • SBC PROPERTIES, L.P.CHANG, Hisao, M.
    • CHANG, Hisao, M.
    • G10L
    • G10L17/26G10L17/04G10L17/14G10L17/22G10L17/24
    • A speaker identity claim (SIC) utterance is received and recognized. The SIC utterance is compared with a voice profile registered under the SIC, and a first verification decision is based thereon. A first dynamic phrase (FDP) is generated, and a user is prompted to speak same. An FDP utterance is received, and compared with the voice profile registered under the SIC to make a second verification decision. If the second verification decision indicates a high or low confidence level, the speaker identity claim is accepted or rejected, respectively. If the verification decision indicates a medium confidence level, a second dynamic phrase (SDP) is generated, and the user is prompted to speak same. An SDP utterance is received, and compared with the voice profile registered under the SIC to make a third verification decision. The speaker identity claim is accepted or rejected based on the third verification decision.
    • 发言人身份证明(SIC)话语被接收和认可。 将SIC语音与在SIC下注册的语音简档进行比较,并且基于此进行第一验证决定。 生成第一个动态短语(FDP),并提示用户说话。 接收到FDP话音,并与SIC下注册的语音配置文件进行比较,作出第二个验证决定。 如果第二验证决定指示高或低置信水平,说话者身份声明分别被接受或拒绝。 如果验证决定指示中等置信水平,则生成第二动态短语(SDP),并且提示用户说话。 接收到SDP话音,并与SIC下注册的语音配置文件进行比较,作出第三个验证决定。 演讲者身份声明根据第三次验证决定被接受或拒绝。
    • 3. 发明申请
    • MODEL ADAPTATION SYSTEM AND METHOD FOR SPEAKER VERIFICATION
    • 用于演讲者验证的模型适配系统和方法
    • WO99023643A1
    • 1999-05-14
    • PCT/US1998/023477
    • 1998-11-03
    • G10L15/06G10L17/00G10L9/06
    • G10L15/07G10L17/04G10L17/14G10L17/18G10L17/20
    • The model adaptation system of the present invention is a speaker verification system that embodies the capability to adapt models learned during the enrollment component to track aging of a user's voice. The system has the advantage of only requiring a single enrollment for recognition models including neural tree networks (22), Gaussian Mixture Models (26), and dynamic time warping (16) or to multiple models (30) (i.e. combinations of neural tree networks (22), Gaussian Mixture Models (26) and Dynamic time warping (30)). Moreover, the present invention can be applied to text-dependent or text-independent systems.
    • 本发明的模型适应系统是一种扬声器验证系统,其体现了适应在注册组件期间学习的模型以跟踪用户语音的老化的能力。 该系统的优点是只需要一个识别模型,包括神经树网络(22),高斯混合模型(26)和动态时间扭曲(16)或多个模型(30)(即神经树网络的组合) (22),高斯混合模型(26)和动态时间扭曲(30))。 此外,本发明可以应用于文本依赖或文本无关系统。
    • 6. 发明申请
    • METHOD OF LINGUISTIC PROFILING
    • 语言分析方法
    • WO2012049368A1
    • 2012-04-19
    • PCT/FI2011/050882
    • 2011-10-12
    • MARTTILA, AnnuPRONOUNCER EUROPE OY
    • MARTTILA, Annu
    • G10L15/18G10L15/06G10L15/02G10L17/00G09B19/06
    • G09B5/00G09B19/04G09B19/06G10L17/14
    • In the method, in order to define or measure the language proficiency of a person, particularly the degree of flawlessness in the pronunciation, and/or to find out the linguistic background and identity of a person, the person's speech is compared with a selected reference language. This is carried out by applying autocorrelation and/or pattern recognition and/or signal processing and/or other corresponding methods for identifying and registering such sound elements and features that are typical of the reference language and occur repeatedly in the reference language speech sample. On the basis of the obtained linguistic profile of the reference language, corresponding sound elements and features are searched in the speech of said person, and there is calculated how many of the sound elements and features of the reference language linguistic profile the person substitutes with such sound elements or features that deviate from the reference language, and said substitute sound elements and features are defined. For applying the method, there is used a device including a memory unit suited for an electronic recording of speech samples of several different languages, and a computer program that enables the linguistic profiling of several languages and the mutual comparison of several speech samples as well as the registering of the detected differences.
    • 在该方法中,为了定义或测量一个人的语言能力,特别是发音的完美程度,和/或找出一个人的语言背景和身份,将该人的言语与所选择的参照进行比较 语言。 这是通过应用自相关和/或模式识别和/或信号处理和/或其他相应的方法来进行的,用于识别和注册参考语言典型的声音元素和特征,并在参考语言语音样本中重复出现。 在所获得的参考语言的语言特征的基础上,在所述人的语音中搜索对应的声音元素和特征,并且计算出人们用这种方式替代的参考语言语言概况的声音元素和特征的数量 声音元素或特征偏离参考语言,并且所述替代声音元素和特征被定义。 为了应用该方法,使用包括适用于几种不同语言的语音样本的电子记录的存储器单元的装置,以及能够进行几种语言的语言分析和几种语音样本的相互比较的计算机程序,以及 注册检测到的差异。
    • 9. 发明申请
    • IDENTIFICATION BY SOUND DATA
    • 通过声音数据识别
    • WO2015156798A1
    • 2015-10-15
    • PCT/US2014/033525
    • 2014-04-09
    • EMPIRE TECHNOLOGY DEVELOPMENT, LLC
    • FINE, Kevin, S.
    • G10L17/00
    • G10L25/54G06F17/30766G06Q30/0251G06Q50/01G10L15/30G10L17/14G10L17/22
    • Technologies are generally described for systems, devices and methods effective to identify an individual. In some examples, a microphone may receive sound data such as sound that may be present in a mall. A processor, that may be in communication with the microphone, may determine a name from the sound data. Stated differently, the processor may determine that the name is part of or included in the sound data. The processor may generate a query based on the name and may send the query to a social network database. The processor may receive a response to the query from the social network database and may identify the individual based on the response.
    • 技术通常描述为有效识别个人的系统,设备和方法。 在一些示例中,麦克风可以接收诸如可能存在于商场中的声音的声音数据。 可以与麦克风通信的处理器可以根据声音数据确定名称。 换句话说,处理器可以确定该名称是声音数据的一部分或包括在声音数据中。 处理器可以基于名称生成查询,并且可以将查询发送到社交网络数据库。 处理器可以从社交网络数据库接收对查询的响应,并且可以基于响应识别个体。
    • 10. 发明申请
    • TEXT-DEPENDENT SPEAKER VERIFICATION
    • 文本相关的扬声器验证
    • WO2008100971A1
    • 2008-08-21
    • PCT/US2008/053769
    • 2008-02-12
    • MICROSOFT CORPORATION
    • ZHANG, ZhengyouSUBRAMAYA, Amarnag
    • G10L17/00
    • G10L17/24G10L17/14
    • A text-dependent speaker verification technique that uses a generic speaker-independent speech recognizer for robust speaker verification, and uses the acoustical model of a speaker-independent speech recognizer as a background model. Instead of using a likelihood ratio test (LRT) at the utterance level (e.g., the sentence level), which is typical of most speaker verification systems, the present text-dependent speaker verification technique uses weighted sum of likelihood ratios at the sub-unit level (word, tri-phone, or phone) as well as at the utterance level.
    • 一种文本相关的扬声器验证技术,其使用一般的与扬声器无关的语音识别器用于强大的扬声器验证,并且使用与扬声器无关的语音识别器的声学模型作为背景模型。 现在的文本相关说明者验证技术不是在大多数说话人验证系统的典型的话语级别(例如,句子级别)上使用似然比检验(LRT),而是使用子单元中的似然比加权和 水平(单词,三话电话或电话)以及话语水平。